References
Abbott, E. (1884). Flatland: A romance of many dimensions.
Dover Publications.
Ahlberg, C., Williamson, C., & Shneiderman, B. (1991). Dynamic
Queries for Information
Exploration: An Implementation
and Evaluation. ACM CHI ‘92 Conference
Proceedings, 619–626.
Allaire, J., & Chollet, F. (2023). Keras: R interface to
’keras’. https://CRAN.R-project.org/package=keras
Anderson, E. (1957). A Semigraphical Method
for the Analysis of Complex
Problems. Proceedings of the National Academy of
Science, 13, 923–927.
Andrews, D. F. (1972). Plots of
High-dimensional Data. Biometrics,
28, 125–136.
Andrews, D. F., Gnanadesikan, R., & Warner, J. L. (1971).
Transformations of Multivariate
Data. Biometrics, 27, 825–840.
Anselin, L., & Bao, S. (1997). Exploratory
Spatial Data Analysis
Linking SpaceStat and
ArcView. In M. M. Fischer & A. Getis
(Eds.), Recent Developments in
Spatial Analysis (pp. 35–59). Springer.
Arnold, J. B. (2021). Ggthemes: Extra themes, scales and geoms for
ggplot2. https://github.com/jrnold/ggthemes
ASA Statistical Graphics Section. (2023). Video
Library. https://community.amstat.org/jointscsg-section/media/videos.
Asimov, D. (1985). The Grand
Tour: A Tool for
Viewing Multidimensional Data.
SIAM Journal of Scientific and Statistical Computing,
6(1), 128–143.
Auguie, B. (2017). gridExtra: Miscellaneous functions for "grid"
graphics. https://CRAN.R-project.org/package=gridExtra
Australian Bureau of Agricultural and Resource Economics and Sciences.
(2018). Forests of Australia. https://www.agriculture.gov.au/abares/forestsaustralia/forest-data-maps-and-tools/spatial-data/forest-cover
Becker, R. A., & Chambers, J. M. (1984). S: An
environment for data analysis and graphics. Wadsworth.
Becker, R. A., & Cleveland, W. S. (1988). Brushing
Scatterplots. In W. S. Cleveland & M. E. McGill (Eds.),
Dynamic graphics for statistics (pp. 201–224). Wadsworth.
Becker, R., Cleveland, W. S., & Shyu, M.-J. (1996). The
Visual Design and Control of
Trellis Displays. Journal of Computational
and Graphical Statistics, 6(1), 123–155.
Bederson, B. B., & Schneiderman, B. (2003). The craft of
information visualization: Readings and reflections. Morgan
Kaufmann.
Bellman, R. (1961). Adaptive control processes : A guided tour.
Bickel, P. J., Kur, G., & Nadler, B. (2018). Projection pursuit in
high dimensions. Proceedings of the National Academy of
Sciences, 115, 9151–9156. https://doi.org/10.1073/pnas.1801177115
Bishop, C. M. (2006). Pattern Recognition and
Machine Learning. Springer.
Boehmke, B., & Greenwell, B. M. (2019). Hands-on machine
learning with r (1st ed.). Chapman; Hall/CRC. https://doi.org/10.1201/9780367816377
Boelaert, J., Ollion, E., & Sodoge, J. (2022). aweSOM:
Interactive self-organizing maps. https://CRAN.R-project.org/package=aweSOM
Bonneau, G.-P., Ertl, T., & Nielson, G. M. (Eds.). (2006).
Scientific visualization: The visual extraction of knowledge from
data. Springer.
Borg, I., & Groenen, P. J. F. (2005). Modern
Multidimensional Scaling. Springer.
Breiman, L. (2001). Random Forests. Machine
Learning, 45(1), 5–32.
Breiman, L., Cutler, A., Liaw, A., & Wiener, M. (2022).
randomForest: Breiman and cutler’s random forests for classification
and regression. https://www.stat.berkeley.edu/~breiman/RandomForests/
Breiman, L., Friedman, J., Olshen, C., & Stone, C. (1984).
Classification and Regression Trees.
Wadsworth; Brooks/Cole.
Buja, A. (1996). Interactive Graphical Methods
in the Analysis of Customer Panel
Data: Comment. Journal of Business &
Economic Statistics, 14(1), 128–129.
Buja, A., & Asimov, D. (1986). Grand Tour
Methods: An Outline.
Computing Science and Statistics, 17, 63–67.
Buja, A., Asimov, D., Hurley, C., & McDonald, J. A. (1988).
Elements of a Viewing Pipeline
for Data Analysis. In W. S. Cleveland & M.
E. McGill (Eds.), Dynamic graphics for statistics (pp.
277–308). Wadsworth.
Buja, A., Cook, D., Asimov, D., & Hurley, C. (1997). Dynamic
Projections in High-Dimensional
Visualization: Theory and
Computational Methods.
AT&T Labs.
Buja, A., Cook, D., Asimov, D., & Hurley, C. (2005).
Computational Methods for
High-Dimensional Rotations in
Data Visualization. In C. R. Rao, E. J.
Wegman, & J. L. Solka (Eds.), Handbook of statistics: Data
mining and visualization (pp. 391–414). Elsevier/North-Holland.
Buja, A., Cook, D., & Swayne, D. (1996). Interactive
High-Dimensional Data
Visualization. Journal of Computational and Graphical
Statistics, 5(1), 78–99.
Buja, A., Hurley, C., & McDonald, J. A. (1986). A Data
Viewer for Multivariate Data.
Computing Science and Statistics, 17(1), 171–174.
Buja, A., & Swayne, D. F. (2002). Visualization
Methodology for Multidimensional
Scaling. Journal of Classification,
19(1), 7–43.
Buja, A., Swayne, D. F., Littman, M. L., Dean, N., Hofmann, H., &
Chen, L. (2008). Data visualization with multidimensional scaling.
Journal of Computational and Graphical Statistics,
17(2), 444–472. https://doi.org/10.1198/106186008X318440
Buja, A., & Tukey, P. (Eds.). (1991). Computing and
Graphics in Statistics. Springer-Verlag.
Card, S. K., Mackinlay, J. D., & Schneiderman, B. (1999).
Readings in information visualization. Morgan Kaufmann
Publishers.
Carr, D. B., Wegman, E. J., & Luo, Q. (1996).
ExplorN: Design
Considerations Past and
Present (Technical Report No. 129). Center for
Computational Statistics, George Mason University.
Chatfield, C. (1995). Problem solving: A statistician’s guide.
Chapman; Hall/CRC Press.
Chen, C., Härdle, W., & Unwin, A. (Eds.). (2006). Handbook of
computational statistics (volume III) data visualization. Springer.
Chen, C.-H., Härdle, W., & Unwin, A. (Eds.). (2007). Handbook of
Data Visualization. Springer.
Cheng, B., & Titterington, M. (1994). Neural Networks:
A Review from a Statistical
Perspective. Statistical Science, 9(1),
2–30.
Cheng, J., & Sievert, C. (2021). Crosstalk: Inter-widget
interactivity for HTML widgets. https://rstudio.github.io/crosstalk/
Chernoff, H. (1973). The Use of Faces to
Represent Points in k-dimensional Space
Graphically. Journal of the American Statistical
Association, 68, 361–368.
Cleveland, W. S. (1979). Robust Localy
Weighted Regression and Smoothing
Scatterplots. Journal of American Statistics
Association, 74, 829–836.
Cleveland, W. S. (1993). Visualizing Data. Hobart
Press.
Cleveland, W. S., & McGill, M. E. (Eds.). (1988). Dynamic
graphics for statistics. Wadsworth.
Cook, D., & Buja, A. (1997). Manual
Controls For
High-Dimensional Data
Projections. Journal of Computational and Graphical
Statistics, 6(4), 464–480.
Cook, D., Buja, A., & Cabrera, J. (1993). Projection
Pursuit Indexes Based on
Orthonormal Function Expansions.
Journal of Computational and Graphical Statistics,
2(3), 225–250.
Cook, D., Buja, A., Cabrera, J., & Hurley, C. (1995b). Grand
Tour and Projection Pursuit.
Journal of Computational and Graphical Statistics,
4(3), 155–172.
Cook, D., Buja, A., Cabrera, J., & Hurley, C. (1995a). Grand
Tour and Projection Pursuit.
Journal of Computational and Graphical Statistics,
4(3), 155–172.
Cook, D., Hofmann, H., Lee, E.-K., Yang, H., Nikolau, B., & Wurtele,
E. (2007). Exploring Gene Expression
Data, Using Plots. Journal of
Data Science, 5(2), 151–182.
Cook, D., & Laa, U. (2023). Mulgar: Functions for pre-processing
data for multivariate data visualisation using tours. https://dicook.github.io/mulgar/
Cook, D., Lee, E.-K., Buja, A., & Wickham, H. (2006).
Grand Tours, Projection
Pursuit Guided Tours and
Manual Controls. In C.-H. Chen, W. Härdle,
& A. Unwin (Eds.), Handbook of Data
Visualization. Springer.
Cook, D., Majure, J. J., Symanzik, J., & Cressie, N. (1996).
Dynamic Graphics in a GIS:
Exploring and Analyzing
Multivariate Spatial Data using
Linked Software. Computational Statistics:
Special Issue on Computer Aided Analyses of Spatial Data,
11(4), 467–480.
Cook, D., & Swayne, D. F. (2007). Interactive and dynamic
graphics for data analysis: With R and
GGobi. Springer-Verlag. https://doi.org/10.1007/978-0-387-71762-3
Cortes, C., Pregibon, D., & Volinsky, C. (2003). Computational
Methods for Dynamic Graphs.
Journal of Computational & Graphical Statistics,
12(4), 950–970.
Cortes, C., & Vapnik, V. N. (1995). Support-Vector
Networks. Machine Learning, 20(3),
273–297.
d’Ocagne, M. (1885). Coordonnées
Parallèles et Axiales: Méthode de
transformation géométrique et procédé nouveau de calcul graphique
déduits de la considération des coordonnées paralléles.
Gauthier-Villars.
Dalgaard, P. (2002). Introductory statistics with
R. Springer.
Dasu, T., Swayne, D. F., & Poole, D. (2005). Grouping
Multivariate Time Series: A
Case Study. Proceedings of the IEEE
Workshop on Temporal Data Mining:
Algorithms, Theory and
Applications, in Conjunction with the Conference on Data
Mining, Houston, November 27, 2005, 25–32.
de Vries, A., & Ripley, B. D. (2022). Ggdendro: Create
dendrograms and tree diagrams using ggplot2. https://github.com/andrie/ggdendro
Department of Environment, Land, Water & Planning. (2019). Fire Origins - Current and Historical. https://discover.data.vic.gov.au/dataset/fire-origins-current-and-historical
Department of Environment, Land, Water & Planning. (2020a).
CFA - Fire Station. https://discover.data.vic.gov.au/dataset/cfa-fire-station-vmfeat-geomark_point
Department of Environment, Land, Water & Planning. (2020b).
Recreation Sites. https://discover.data.vic.gov.au/dataset/recreation-sites
Diaconis, P., & Freedman, D. (1984a). Asymptotics of
Graphical Projection Pursuit.
Annals of Statistics, 12, 793–815.
Diaconis, P., & Freedman, D. (1984b). Asymptotics of graphical
projection pursuit. Annals of Statistics, 12(3),
793–815. https://doi.org/10.1214/aos/1176346703
Dykes, J., MacEachren, A. M., & Kraak, M.-J. (2005). Exploring
geovisualization. Elsevier.
Everitt, B. S., Landau, S., & Leese, M. (2001). Cluster
Analysis (4th ed). Edward Arnold.
Fienberg, S. E. (1979). Graphical Methods in
Statistics. Journal of American Statistical
Association, 33(4), 165–178.
Fisher, R. A. (1936a). The Use of Multiple
Measurements in Taxonomic
Problems. Annals of Eugenics, 7, 179–188.
Fisher, R. A. (1936b). The use of multiple measurements in taxonomic
problems. Annals of Eugenics, 7(2), 179–188. https://doi.org/10.1111/j.1469-1809.1936.tb02137.x
Fisher, R. A. (1938). The Statistical
Utilization of Multiple
Measurements. Annals of Eugenics, 8,
376–386.
Fisherkeller, M. A., Friedman, J. H., & Tukey, J. W. (1973).
PRIM-9, an interactive multidimensional data display
and analysis system. https://www.youtube.com/watch?v=B7XoW2qiFUA
Fisherkeller, M. A., Friedman, J. H., & Tukey, J. W. (1974).
PRIM-9, an interactive multidimensional data display and
analysis system. In W. S. Cleveland (Ed.), The collected works of
john w. Tukey: Graphics 1965-1985, volume v (pp. 340–346).
Forbes, J., Cook, D., & Hyndman, R. J. (2020). Spatial modelling of
the two-party preferred vote in australian federal elections: 2001–2016.
Australian & New Zealand Journal of Statistics,
62(2), 168–185. https://doi.org/https://doi.org/10.1111/anzs.12292
Ford, B. J. (1992). Images of science: A history of scientific
illustration. The British Library.
Forgy, E. (1965). Cluster analysis of multivariate data: Efficiency
versus interpretability of classification. Biometrics,
21(3), 768–769.
Fraley, C., & Raftery, A. E. (2002). Model-based
Clustering, Discriminant
Analysis, Density Estimation.
Journal of the American Statistical Association, 97,
611–631.
Fraley, C., Raftery, A. E., & Scrucca, L. (2022). Mclust:
Gaussian mixture modelling for model-based clustering, classification,
and density estimation. https://mclust-org.github.io/mclust/
Friedman, J. H. (1987). Exploratory Projection
Pursuit. Journal of American Statistical
Association, 82, 249–266.
Friedman, J. H., & Tukey, J. W. (1974). A
Projection Pursuit Algorithm for
Exploratory Data Analysis.
IEEE Transactions on Computing C, 23, 881–889.
Friendly, M., & Denis, D. J. (2004). Milestones in the history
of thematic cartography, statistical graphics, and data
visualization. http://www.math.yorku.ca/SCS/Gallery/milestone/.
Fritsch, S., Guenther, F., & Wright, M. N. (2019). Neuralnet:
Training of neural networks. https://CRAN.R-project.org/package=neuralnet
Furnas, G. W., & Buja, A. (1994). Prosection Views:
Dimensional Inference Through
Sections and Projections. Journal of
Computational and Graphical Statistics, 3(4), 323–385.
Gabriel, K. R. (1971). The Biplot Graphical
Display of Matrices with
Applications to Principal
Component Analysis. Biometrika,
58, 453–467.
Gentle, J. E., Härdle, W., & Mori, Y. (Eds.). (2004). Handbook
of computational statistics: Concepts and methods. Springer.
Giordani, P., Ferraro, M. B., & Martella, F. (2020). An
introduction to clustering with r. Springer Singapore. https://doi.org/10.1007/978-981-13-0553-5
Glover, D. M., & Hopke, P. K. (1992). Exploration of
Multivariate Chemical Data by
Projection Pursuit. Chemometrics and
Intelligent Laboratory Systems, 16, 45–59.
Good, P. (2005). Permutation, Parametric, and
Bootstrap Tests of
Hypotheses. Springer.
Gower, J. C., & Hand, D. J. (1996). Biplots. Chapman; Hall.
Hajibaba, H., Karlsson, L., & Dolnicar, S. (2016). Residents open
their homes to tourists when disaster strikes. Journal of Travel
Research, 56(8), 1065–1078.
Hansen, C., & Johnson, C. R. (2004). Visualization
handbook. Academic Press.
Harrison, P. (2023a). Langevitour: Langevin tour. https://logarithmic.net/langevitour/
Harrison, P. (2023b). Langevitour: Smooth interactive touring of high
dimensions, demonstrated with scRNA-seq data. The R Journal,
15(2), 206–219. https://doi.org/10.32614/RJ-2023-046
Hart, C., & Wang, E. (2022). Detourr: Portable and performant
tour animations. https://casperhart.github.io/detourr/
Hartigan, J. A., & Kleiner, B. (1981). Mosaics for
Contingency Tables. Computer Science and
Statistics: Proceedings of the 13th Symposium on the Interface,
268–273.
Hartigan, J., & Kleiner, B. (1984). A Mosaic of
Television Ratings. The American
Statistician, 38, 32–35.
Haslett, J., Bradley, R., Craig, P., Unwin, A., & Wills, G. (1991).
Dynamic Graphics for Exploring
Spatial Data with Application to
Locating Global and Local
Anomalies. The American Statistician,
45(3), 234–242.
Hastie, T., Tibshirani, R., & Friedman, J. (2001). The
Elements of Statistical
Learning. Springer.
Hennig, C., Meila, M., Murtagh, F., & Rocci, R. (Eds.). (2015).
Handbook of cluster analysis. Chapman; Hall/CRC.
https://doi.org/10.1201/b19706
Hofmann, H. (2001). Graphical Tools for the
Exploration of Multivariate
Categorical Data. Books on Demand.
Hofmann, H. (2003). Constructing and Reading
Mosaicplots. Computational Statistics and Data
Analysis, 43(4), 565–580.
Hofmann, H., & Theus, M. (1998). Selection Sequences in
MANET. Computational Statistics, 13(1),
77–87.
Horikoshi, M., & Tang, Y. (2018). Ggfortify: Data visualization
tools for statistical analysis results. https://CRAN.R-project.org/package=ggfortify
Horikoshi, M., & Tang, Y. (2023). Ggfortify: Data visualization
tools for statistical analysis results. https://github.com/sinhrks/ggfortify
Horst, A., Hill, A., & Gorman, K. (2022). Palmerpenguins: Palmer
archipelago (antarctica) penguin data. https://CRAN.R-project.org/package=palmerpenguins
Hotelling, H. (1933). Analysis of a complex of statistical variables
into principal components. Journal of Educational Psychology,
24(6), 417--441. https://doi.org/10.1037/h0071325
Huber, P. J. (1985). Projection Pursuit (with
discussion). Annals of Statistics, 13, 435–525.
Hurley, C. (1987). The data viewer: An interactive program for data
analysis [PhD thesis]. University of Washington.
Iannone, R., Cheng, J., Schloerke, B., Hughes, E., Lauer, A., & Seo,
J. (2023). Gt: Easily create presentation-ready display tables.
https://CRAN.R-project.org/package=gt
Ihaka, R., & Gentleman, R. (1996). R: A
Language for Data Analysis and
Graphics. Journal of Computational and Graphical
Statistics, 5, 299–314.
Ihaka, R., Murrell, P., Hornik, K., Fisher, J. C., Stauffer, R., Wilke,
C. O., McWhite, C. D., & Zeileis, A. (2023). Colorspace: A
toolbox for manipulating and assessing colors and palettes. https://CRAN.R-project.org/package=colorspace
Inselberg, A. (1985). The Plane with
Parallel Coordinates. The Visual
Computer, 1, 69–91.
Iowa State University. (2020). ASOS-AWOS-METAR data download.
https://mesonet.agron.iastate.edu/request/download.phtml?network=AU__ASOS
Johnson, D., & Travis, J. (2007). Flatland: The movie.
https://round-drum-w7xh.squarespace.com/our-story.
Johnson, R. A., & Wichern, D. W. (2002). Applied multivariate
statistical analysis (5th ed). Prentice-Hall.
Jolliffe, I. T., & Cadima, J. (2016). Principal component analysis:
A review and recent developments. Phil. Trans. R. Soc. A.,
374, 20150202. https://doi.org/10.1098/rsta.2015.0202
Jones, M. C., & Sibson, R. (1987). What is
Projection Pursuit? (With discussion).
Journal of the Royal Statistical Society, Series A,
150, 1–36.
Kassambara, A. (2017). Practical guide to cluster analysis in r:
Unsupervised machine learning. STHDA.
Kassambara, A. (2023). Ggpubr: ggplot2 based publication ready
plots. https://rpkgs.datanovia.com/ggpubr/
Kohonen, T. (2001). Self-Organizing Maps
(3rd ed). Springer.
Koschat, M. A., & Swayne, D. F. (1996). Interactive
Graphical Methods in the Analysis
of Customer Panel Data (with
discussion). Journal of Business and Economic Statistics,
14(1), 113–132.
Krijthe, J. (2022). Rtsne: T-distributed stochastic neighbor
embedding using a barnes-hut implementation. https://github.com/jkrijthe/Rtsne
Kruskal, J. B. (1964a). Multidimensional Scaling by
Optimizing Goodness of Fit to a
Nonmetric Hypothesis. Psychometrika,
29, 1–27.
Kruskal, J. B. (1964b). Nonmetric Multidimensional
Scaling: A Numerical Method.
Psychometrika, 29, 115–129.
Kruskal, J. B., & Wish, M. (1978). Multidimensional
Scaling. Sage Publications.
Kuhn, M., & Wickham, H. (2020). Tidymodels: A collection of
packages for modeling and machine learning using tidyverse
principles. https://www.tidymodels.org
Kuhn, M., & Wickham, H. (2023). Tidymodels: Easily install and
load the tidymodels packages. https://CRAN.R-project.org/package=tidymodels
Laa, U., Cook, D., & Lee, S. (2022). Burning sage: Reversing the
curse of dimensionality in the visualization of high-dimensional data.
Journal of Computational and Graphical Statistics,
31(1), 40–49. https://doi.org/10.1080/10618600.2021.1963264
Laa, U., Cook, D., & Valencia, G. (2020a). A slice tour for finding
hollowness in high-dimensional data. Journal of Computational and
Graphical Statistics, 29(3), 681–687. https://doi.org/10.1080/10618600.2020.1777140
Laa, U., Cook, D., & Valencia, G. (2020b). A slice tour for finding
hollowness in high-dimensional data. Journal of Computational and
Graphical Statistics, 29(3), 681–687. https://doi.org/10.1080/10618600.2020.1777140
Lancaster, H. O. (1965). The helmert matrices. The American
Mathematical Monthly, 72(1), 4–12.
Laurent, S. (2023). Cxhull: Convex hull. https://github.com/stla/cxhull
Lee, E.-K. (2018). PPtreeViz: An r package for visualizing projection
pursuit classification trees. Journal of Statistical Software,
83(8), 1–30. https://doi.org/10.18637/jss.v083.i08
Lee, E.-K., & Cook, D. (2009). A projection pursuit index for large
p small n data. Statistics and
Computing, 20, 381–392. https://doi.org/10.1007/s11222-009-9131-1
Lee, E.-K., Cook, D., Klinke, S., & Lumley, T. (2005).
Projection Pursuit for
Exploratory Supervised
Classification. Journal of Computational and Graphical
Statistics, 14(4), 831–846.
Lee, S. (2021). Liminal: Multivariate data visualization with tours
and embeddings. https://CRAN.R-project.org/package=liminal
Lee, S., Cook, D., Silva, N. da, Laa, U., Spyrison, N., Wang, E., &
Zhang, H. S. (2022). The state-of-the-art on tours for dynamic
visualization of high-dimensional data. WIREs Computational
Statistics, 14(4), e1573. https://doi.org/10.1002/wics.1573
Lee, Y. D., Cook, D., Park, J., & Lee, E.-K. (2013). PPtree: Projection pursuit classification tree.
Electronic Journal of Statistics, 7(none), 1369–1386.
https://doi.org/10.1214/13-EJS810
Leisch, F., & Gruen, B. (2023). CRAN task view: Cluster analysis
& finite mixture models.
https://cran.r-project.org/web/views/Cluster.html.
Leisch, F., & Grün, B. (2020). MSA: Market segmentation
analysis.
Li, M., Zhao, Z., & Scheidegger, C. (2020). Visualizing neural
networks with the grand tour. Distill. https://doi.org/10.23915/distill.00025
Liaw, A., & Wiener, M. (2002). Classification and regression by
randomForest. R News, 2(3), 18–22. https://CRAN.R-project.org/doc/Rnews/
Littman, M. L., Swayne, D. F., Dean, N., & Buja, A. (1992).
Visualizing the Embedding of Objects in
Euclidean Space. Computing Science and
Statistics: Proceedings of the 24th Symposium on the Interface,
208–217.
Lloyd, S. (1982). Least squares quantization in PCM. IEEE
Transactions on Information Theory, 28(2), 129–137. https://doi.org/10.1109/TIT.1982.1056489
Longley, P. A., Maguire, D. J., Goodchild, M. F., & Rhind, D. W.
(2005). Geographic information systems and science. John Wiley
& Sons.
Loperfido, N. (2018). Skewness-based projection pursuit: A computational
approach. Computational Statistics & Data Analysis,
120, 42–57. https://doi.org/https://doi.org/10.1016/j.csda.2017.11.001
Maaten, L. van der, & Hinton, G. (2008). Visualizing data using
t-SNE. J. Mach. Learn. Res.,
9(Nov), 2579–2605. http://www.jmlr.org/papers/v9/vandermaaten08a.html
MacQueen, J. B. (1967). Some methods for classification and analysis of
multivariate observations. In L. M. L. Cam & J. Neyman (Eds.),
Proc. Of the fifth berkeley symposium on mathematical statistics and
probability (Vol. 1, pp. 281–297). University of California Press.
Maindonald, J., & Braun, J. (2003). Data analysis and graphics
using r - an example-based approach. Cambridge University Press.
Martin, E. (1965). Flatland.
http://www.der.org/films/flatland.html.
Mayer, M., & Watson, D. (2023). Kernelshap: Kernel SHAP. https://CRAN.R-project.org/package=kernelshap
McFarlane, M., & Young, F. W. (1994). Graphical
Sensitivity Analysis for
Multidimensional Scaling. Journal of
Computational and Graphical Statistics, 3, 23–33.
McInnes, L., Healy, J., & Melville, J. (2018).
UMAP: Uniform manifold approximation and projection for
dimension reduction. http://arxiv.org/abs/1802.03426
McNeil, D. (1977). Interactive Data
Analysis. John Wiley & Sons.
McVicar, T. (2011). Near-surface wind speed. v10. CSIRO. Data
collection. https://doi.org/10.25919/5c5106acbcb02
Meyer, D., Dimitriadou, E., Hornik, K., Weingessel, A., & Leisch, F.
(2023). e1071: Misc functions of the department of statistics,
probability theory group (formerly: E1071), TU wien. https://CRAN.R-project.org/package=e1071
Milborrow, S. (2022). Rpart.plot: Plot rpart models: An enhanced
version of plot.rpart. http://www.milbo.org/rpart-plot/index.html
Mock, T. (2022). gtExtras: Extending gt for beautiful HTML
tables. https://CRAN.R-project.org/package=gtExtras
Molnar, C. (2022). Interpretable machine learning: A guide for
making black box models explainable (2nd ed).
https://christophm.github.io/interpretable-ml-book/.
Moon, K. R., Dijk, D. van, Wang, Z., Gigante, S., Burkhardt, D. B.,
Chen, W. S., Yim, K., Elzen, A. van den, Hirn, M. J., Coifman, R. R.,
Ivanova, N. B., Wolf, G., & Krishnaswamy, S. (2019). Visualizing
structure and transitions for biological data exploration. Nature
Biotechnology, 37, 1482–1492. https://doi.org/10.1038/s41587-019-0336-3
Murrell, P. (2005). R graphics. Chapman & Hall/CRC.
OpenStreetMap contributors. (2020). Planet dump
retrieved from https://planet.osm.org .
https://www.openstreetmap.org.
Pearson, K. (1901). LIII. On lines and planes of closest fit to systems
of points in space. The London, Edinburgh, and Dublin Philosophical
Magazine and Journal of Science, 2(11), 559–572. https://doi.org/10.1080/14786440109462720
Pedersen, T. L. (2023). Patchwork: The composer of plots. https://CRAN.R-project.org/package=patchwork
Perisic, I., & Posse, C. (2005). Projection pursuit indices based on
the empirical distribution function. Journal of Computational and
Graphical Statistics, 14(3), 700–715. https://doi.org/10.1198/106186005X69440
Polzehl, J. (1995). Projection Pursuit
Discriminant Analysis. Computational
Statistics and Data Analysis, 20, 141–157.
Posse, C. (1992). Projection Pursuit
Discriminant Analysis for Two
Groups. Communications in Statistics, Part A – Theory
and Methods, 21, 1–19.
Posse, C. (1995). Tools for Two-dimensional
Projection Pursuit. Journal of
Computational and Graphical Statistics, 4(2), 83–100.
P-Tree System. (2020). JAXA Himawari Monitor -
User’s Guide. https://www.eorc.jaxa.jp/ptree/userguide.html
R Core Team. (2023). R: A language and environment for statistical
computing. R Foundation for Statistical Computing. https://www.R-project.org/
Rao, C. R. (1948). The Utilization of Multiple
Measurements in Problems of
Biological Classification (with discussion).
Journal of the Royal Statistical Society, Series B,
10, 159–203.
Rao, C. R. (Ed.). (1993). Handbook of
Statistics, Vol. 9. Elsevier Science
Publishers.
Rao, C. R., Wegman, E. J., & Solka, J. L. (Eds.). (2006).
Handbook of Statistics: Data
Mining and Visualization.
Elsevier/North-Holland.
Ripley, B. (1996). Pattern Recognition and
Neural Networks. Cambridge University
Press.
Ripley, B. (2023a). MASS: Support functions and datasets for
venables and ripley’s MASS. http://www.stats.ox.ac.uk/pub/MASS4/
Ripley, B. (2023b). Nnet: Feed-forward neural networks and
multinomial log-linear models. http://www.stats.ox.ac.uk/pub/MASS4/
Rothkopf, E. Z. (1957). A Measure of Stimulus
Similarity and Errors in Some
Paired-associate Learning Tasks.
Journal of Experimental Psychology, 53, 94–101.
Schloerke, B. (2016). Geozoo: Zoo of geometric objects. https://CRAN.R-project.org/package=geozoo
Schloerke, B., Cook, D., Larmarange, J., Briatte, F., Marbach, M.,
Thoen, E., Elberg, A., & Crowley, J. (2023). GGally: Extension
to ggplot2. https://ggobi.github.io/ggally/
Scrucca, L., Fop, M., Murphy, T. B., & Raftery, A. E. (2016). mclust 5: Clustering, classification and density
estimation using Gaussian finite mixture models. The
R Journal, 8(1), 289–317. https://doi.org/10.32614/RJ-2016-021
Shepard, R. N. (1962). The Analysis of
Proximities: Multidimensional
Scaling with an Unknown Distance
Function, I and II.
Psychometrika, 27, 125-139 and 219-246.
Sievert, C. (2020). Interactive web-based data visualization with r,
plotly, and shiny. Chapman; Hall/CRC. https://plotly-r.com
Sievert, C., Parmer, C., Hocking, T., Chamberlain, S., Ram, K.,
Corvellec, M., & Despouy, P. (2023). Plotly: Create interactive
web graphics via plotly.js. https://CRAN.R-project.org/package=plotly
Sjoberg, D. D., Larmarange, J., Curry, M., Lavery, J., Whiting, K.,
& Zabor, E. C. (2023). Gtsummary: Presentation-ready data
summary and analytic result tables. https://CRAN.R-project.org/package=gtsummary
Sjoberg, D. D., Whiting, K., Curry, M., Lavery, J. A., & Larmarange,
J. (2021). Reproducible summary tables with the gtsummary package.
The R Journal, 13, 570–580. https://doi.org/10.32614/RJ-2021-053
Slowikowski, K. (2023). Ggrepel: Automatically position
non-overlapping text labels with ggplot2. https://github.com/slowkow/ggrepel
Sparks, A. H., Carroll, J., Goldie, J., Marchiori, D., Melloy, P.,
Padgham, M., Parsonage, H., & Pembleton, K. (2020). bomrang: Australian government bureau of
meteorology (BOM) data client. https://CRAN.R-project.org/package=bomrang
Spence, R. (2007). Information visualization: Design for
interaction. Prentice Hall.
Stauffer, R., Mayr, G. J., Dabernig, M., & Zeileis, A. (2009).
Somewhere over the rainbow: How to make effective use of colors in
meteorological visualizations. Bulletin of the American
Meteorological Society, 96(2), 203–216. https://doi.org/10.1175/BAMS-D-13-00155.1
Sutherland, P., Rossini, A., Lumley, T., Lewin-Koh, N., Dickerson, J.,
Cox, Z., & Cook, D. (2000a). Orca: A
Visualization Toolkit for
High-Dimensional Data.
Journal of Computational and Graphical Statistics,
9(3), 509–529.
Sutherland, P., Rossini, A., Lumley, T., Lewin-Koh, N., Dickerson, J.,
Cox, Z., & Cook, D. (2000b). Orca: A visualization toolkit for
high-dimensional data. Journal of Computational and Graphical
Statistics, 9(3), 509–529. https://doi.org/10.1080/10618600.2000.10474896
Swayne, D. F., Buja, A., & Temple Lang, D. (2004). Exploratory
visual analysis of graphs in GGobi. In J. Antoch (Ed.),
CompStat: Proceedings in computational statistics, 16th
symposium. Physica-Verlag.
Swayne, D. F., Cook, D., & Buja, A. (1992). XGobi:
Interactive Dynamic Graphics in
the X Window System with a
Link to S. American Statistical
Association 1991 Proceedings of the Section on Statistical
Graphics, 1–8.
Swayne, D. F., Cook, D., & Buja, A. (1998). XGobi: Interactive
dynamic data visualization in the x window system. Journal of
Computational and Graphical Statistics, 7(1), 113–130. https://doi.org/10.1080/10618600.1998.10474764
Swayne, D. F., & Klinke, S. (1998). Editorial commentary.
Computational Statistics: Special Issue on The Use of Interactive
Graphics, 14(1).
Swayne, D. F., Temple Lang, D., Buja, A., & Cook, D. (2003).
GGobi: Evolving from XGobi into
an Extensible Framework for
Interactive Data Visualization.
Computational Statistics & Data Analysis, 43,
423–444.
Swayne, D., & Buja, A. (1998). Missing
Data in Interactive
High-Dimensional Data
Visualization. Computational Statistics,
13(1), 15–26.
Symanzik, J. (2002). New applications of the image grand tour.
Computing Science and Statistics, 34, 500--512. https://math.usu.edu/symanzik/papers/2002_interface.pdf
Symanzik, J. (2004). Interactive and Dynamic
Graphics. In J. E. Gentle, W. Härdle, & Y. Mori (Eds.),
Handbook of computational statistics: Concepts and methods (pp.
293–336). Springer.
Takatsuka, M., & Gahegan, M. (2002). GeoVISTA Studio: A
Codeless Visual Programming
Environment for Geoscientific
Data Analysis and Visualization.
The Journal of Computers and Geosciences, 28(10),
1131–1144.
Tang, Y., Horikoshi, M., & Li, W. (2016). Ggfortify: Unified
interface to visualize statistical result of popular r packages. The
R Journal, 8(2), 474–485. https://doi.org/10.32614/RJ-2016-060
Tarpey, T., Li, L., & Flury, B. (1995). Principal points and
self–consistent points of elliptical distributions. The Annals of
Statistics, 23, 103–112.
Temple Lang, D., Swayne, D., Wickham, H., & Lawrence, M. (2006).
rggobi
: An
Interface between R and
GGobi. http://www.R-project.org
.
Therneau, T., & Atkinson, B. (2023). Rpart: Recursive
partitioning and regression trees. https://CRAN.R-project.org/package=rpart
Theus, M. (2002). Interactive Data
Visualization Using Mondrian.
Journal of Statistical Software, 7(11),
http://www.jstatsoft.org.
Theus, M., Hofmann, H., & Wilhelm, A. F. X. (1998). Selection
Sequences – Interactive Analysis
of Massive Data Sets.
Computing Science and Statistics, 29(1), 439–444.
Thompson, G. L. (1993). Generalized Permutation
Polytopes and Exploratory
Graphical Methods for Ranked
Data. The Annals of Statistics, 21,
1401–1430.
Tierney, L. (1991). LispStat:
An Object-Orientated
Environment for Statistical
Computing and Dynamic
Graphics. John Wiley & Sons.
Tierney, N., & Cook, D. (2023a). Expanding tidy data principles to
facilitate missing data exploration, visualization and assessment of
imputations. Journal of Statistical Software, 105(7),
1–31. https://doi.org/10.18637/jss.v105.i07
Tierney, N., & Cook, D. (2023b). Expanding tidy data principles to
facilitate missing data exploration, visualization and assessment of
imputations. Journal of Statistical Software, 105(7),
1–31. https://doi.org/10.18637/jss.v105.i07
Tierney, N., Cook, D., McBain, M., & Fay, C. (2023). Naniar:
Data structures, summaries, and visualisations for missing data. https://github.com/njtierney/naniar
Torgerson, W. S. (1952). Multidimensional Scaling. 1.
Theory and Method. Psychometrika,
17, 401–419.
Tufte, E. (1983). The visual display of quantitative
information. Graphics Press.
Tufte, E. (1990). Envisioning information. Graphics Press.
Tukey, J. W. (1965). The Technical Tools of
Statistics. The American Statistician,
19, 23–28.
Unwin, A. R., Hawkins, G., Hofmann, H., & Siegl, B. (1996).
Interactive Graphics for Data
Sets with Missing Values -
MANET. Journal of Computational and Graphical
Statistics, 5(2), 113–122.
Unwin, A., Hofmann, H., & Wilhelm, A. (2002). Direct
Manipulation Graphics for Data
Mining. Journal of Image and Graphics,
2(1), 49–65.
Unwin, A., Theus, M., & Hofmann, H. (2006). Graphics of
Large Datasets: Visualizing a
Million. Springer.
Unwin, A., Volinsky, C., & Winkler, S. (2003). Parallel
Coordinates for Exploratory
Modelling Analysis. Comput. Stat. Data
Anal., 43(4), 553–564. https://doi.org/{\tt
http://dx.doi.org/10.1016/S0167-9473(02)00292-X}
Urbanek, S., & Theus, M. (2003). iPlots:
High Interaction Graphics for
R. In K. Hornik, F. Leisch, & A. Zeileis (Eds.),
Proceedings of the 3rd international workshop on distributed
statistical computing (DSC 2003).
Vaidyanathan, R., Xie, Y., Allaire, J., Cheng, J., Sievert, C., &
Russell, K. (2023). Htmlwidgets: HTML widgets for r. https://github.com/ramnathv/htmlwidgets
van der Maaten, L. J. P. (2014). Accelerating t-SNE using tree-based
algorithms. Journal of Machine Learning Research, 15,
3221–3245.
van der Maaten, L. J. P., & Hinton, G. E. (2008). Visualizing
high-dimensional data using t-SNE. Journal of Machine Learning
Research, 9, 2579–2605.
Vapnik, V. N. (1999). The Nature of
Statistical Learning Theory.
Springer.
Velleman, P. F., & Velleman, A. Y. (1985). Data desk
handbook. Data Description, Inc.
Venables, W. N., & Ripley, B. (2002a). Modern
Applied Statistics with S.
Springer-Verlag.
Venables, W. N., & Ripley, B. D. (2002b). Modern applied
statistics with s (Fourth). Springer. https://www.stats.ox.ac.uk/pub/MASS4/
Venables, W. N., & Ripley, B. D. (2002c). Modern applied
statistics with s (Fourth). Springer. https://www.stats.ox.ac.uk/pub/MASS4/
Wainer, H. (2000). Visual Revelations (2nd ed).
LEA, Inc.
Wainer, H., & Spence, I. (eds). (2005a). The
Commercial and Political Atlas,
Representing, by means of Stained
Copper-Plate Charts,
The Progress of the Commerce,
Revenues, Expenditure, and Debts
of England, during the whole of the Eighteenth
Century, by William
Playfair. Cambridge University Press.
Wainer, H., & Spence, I. (eds). (2005b). The
Statistical Breviary; Shewing on
a Principle entirely new, the resources of every state and
kingdom in Europe; illustrated with Stained
Copper-Plate Charts, representing
the physical powers of each distinct nation with ease and perspicuity by
William Playfair. Cambridge University
Press.
Wang, P. C. C. (Ed.). (1978). Graphical
Representation of Multivariate
Data. Academic Press.
Wegman, E. (1990). Hyperdimensional Data
Analysis Using Parallel
Coordinates. Journal of American Statistics
Association, 85, 664–675.
Wegman, E. J. (1991). The Grand Tour in
k-Dimensions
(Technical Report No. 68). Center for Computational Statistics, George
Mason University.
Wegman, E. J., & Carr, D. B. (1993). Statistical
Graphics and Visualization (C. R. Rao,
Ed.; pp. 857–958). Elsevier Science Publishers.
Wegman, E. J., Poston, W. L., & Solka, J. L. (1998). Image
Grand Tour. Automatic Target Recognition
VIII - Proceedings of SPIE, 3371, 286–294.
Wehrens, R., & Buydens, L. M. C. (2007). Self- and super-organizing
maps in R: The kohonen package.
Journal of Statistical Software, 21(5), 1–19. https://doi.org/10.18637/jss.v021.i05
Wehrens, R., & Kruisselbrink, J. (2018). Flexible self-organizing
maps in kohonen 3.0. Journal of
Statistical Software, 87(7), 1–18. https://doi.org/10.18637/jss.v087.i07
Wehrens, R., & Kruisselbrink, J. (2023). Kohonen: Supervised and
unsupervised self-organising maps. https://CRAN.R-project.org/package=kohonen
Wickham, H. (2016). ggplot2: Elegant graphics for data
analysis. Springer-Verlag New York. https://ggplot2.tidyverse.org
Wickham, H. (2022). Classifly: Explore classification models in high
dimensions. http://had.co.nz/classifly
Wickham, H., Chang, W., Henry, L., Pedersen, T. L., Takahashi, K.,
Wilke, C., Woo, K., Yutani, H., & Dunnington, D. (2023).
ggplot2: Create elegant data visualisations using the grammar of
graphics. https://CRAN.R-project.org/package=ggplot2
Wickham, H., & Cook, D. (2024). Tourr: Tour methods for
multivariate data visualisation. https://github.com/ggobi/tourr
Wickham, H., Cook, D., & Hofmann, H. (2015). Visualizing statistical
models: Removing the blindfold. Statistical Analysis and Data
Mining: The ASA Data Science Journal, 8(4), 203–225. https://doi.org/10.1002/sam.11271
Wickham, H., Cook, D., Hofmann, H., & Buja, A. (2011a). Tourr:
An R Package for
Exploring Multivariate Data with
Projections. Journal of Statistical Software,
40(2). https://doi.org/10.18637/jss.v040.i02
Wickham, H., Cook, D., Hofmann, H., & Buja, A. (2011b). tourr: An R package for exploring
multivariate data with projections. Journal of Statistical
Software, 40(2), 1–18. https://doi.org/10.18637/jss.v040.i02
Wickham, H., François, R., Henry, L., Müller, K., & Vaughan, D.
(2023). Dplyr: A grammar of data manipulation. https://CRAN.R-project.org/package=dplyr
Wickham, H., Hester, J., & Bryan, J. (2023). Readr: Read
rectangular text data. https://CRAN.R-project.org/package=readr
Wilhelm, A. F. X., Wegman, E. J., & Symanzik, J. (1999). Visual
Clustering and Classification:
The Oronsay Particle
Size Data Set
Revisited. Computational Statistics: Special Issue on
Interactive Graphical Data Analysis, 14(1), 109–146.
Wilkinson, L. (2005). The grammar of graphics. Springer.
Wills, G. (1999). NicheWorks – Interactive
Visualization of Very Large
Graphs. Journal of Computational and Graphical
Statistics, 8(2), 190–212.
Xie, Y., Hofmann, H., & Cheng, X. (2014). Reactive Programming for Interactive Graphics.
Statistical Science, 29(2), 201–213. https://doi.org/10.1214/14-STS477
Young, F. W., Valero-Mora, P. M., & Friendly, M. (2006). Visual
Statistics: Seeing Data with
Dynamic Interactive
Graphics. John Wiley & Sons.
Zeileis, A., Fisher, J. C., Hornik, K., Ihaka, R., McWhite, C. D.,
Murrell, P., Stauffer, R., & Wilke, C. O. (2020). colorspace: A toolbox for manipulating and
assessing colors and palettes. Journal of Statistical Software,
96(1), 1–49. https://doi.org/10.18637/jss.v096.i01
Zeileis, A., Hornik, K., & Murrell, P. (2009). Escaping
RGBland: Selecting colors for statistical graphics.
Computational Statistics & Data Analysis, 53(9),
3259–3270. https://doi.org/10.1016/j.csda.2008.11.033
Zhang, C., Ye, J., & Wang, X. (2023). A computational perspective on
projection pursuit in high dimensions: Feasible or infeasible feature
extraction. International Statistical Review, 91(1),
140–161. https://doi.org/10.1111/insr.12517
Zhang, H. S., Cook, D., Laa, U., Langrené, N., & Menéndez, P.
(2021). Visual diagnostics for constrained optimisation with application
to guided tours. The R Journal, 13(2), 624–641. https://doi.org/10.32614/RJ-2021-105
Zhang, H. S., Cook, D., Laa, U., Langrené, N., & Menéndez, P.
(2022). Ferrn: Facilitate exploration of touRR optimisatioN. https://github.com/huizezhang-sherry/ferrn/
Zhu, H. (2021). kableExtra: Construct complex table with kable and
pipe syntax. https://CRAN.R-project.org/package=kableExtra