Term | Synonyms | Description |
---|---|---|
variable | feature, attribute | a characteristic, number or quantity that can be measured |
observations | cases, items, experimental units, observational units, records, statistical units, instances, examples | individuals on which the observations are made |
data set | data, file | collection of observations made on one or more variables |
response | target | variable that one wishes to predict |
predictor | independent variable, feature | variables used to produce a mode to predict the response |
similarity | correlation | a measure ranging between 0 and 1, with 1 indicating that the cases are closer |
dissimilarity | distance | a measure where a smaller number means the cases are closer |
principal component analysis (PCA) | empirical orthogonal functions, eigenvalue decomposition | summarise a high-dimensional variance-covariance using an orthonormal matrix and set of variances. Related methods include factor analysis, multidimensional scaling. |
linear discriminant analysis (LDA) | Fisher's linear discriminant | reduce the dimension to the space where the classes are most separated relative to the class means and pooled variance-covariance. |
self-organising map (SOM) | Kohonen map | use a grid-constrained set of means to cluster high-dimensional data, and also provide a 2D view of the clusters |
Appendix D — Glossary
Abbott, E. (1884). Flatland: A romance of many dimensions. Dover Publications.
Ahlberg, C., Williamson, C., & Shneiderman, B. (1991). Dynamic Queries for Information Exploration: An Implementation and Evaluation. ACM CHI ‘92 Conference Proceedings, 619–626.
Allaire, J., & Chollet, F. (2023). Keras: R interface to ’keras’. https://CRAN.R-project.org/package=keras
Anderson, E. (1957). A Semigraphical Method for the Analysis of Complex Problems. Proceedings of the National Academy of Science, 13, 923–927.
Andrews, D. F. (1972). Plots of High-dimensional Data. Biometrics, 28, 125–136.
Andrews, D. F., Gnanadesikan, R., & Warner, J. L. (1971). Transformations of Multivariate Data. Biometrics, 27, 825–840.
Anselin, L., & Bao, S. (1997). Exploratory Spatial Data Analysis Linking SpaceStat and ArcView. In M. M. Fischer & A. Getis (Eds.), Recent Developments in Spatial Analysis (pp. 35–59). Springer.
Arnold, J. B. (2021). Ggthemes: Extra themes, scales and geoms for ggplot2. https://github.com/jrnold/ggthemes
ASA Statistical Graphics Section. (2023). Video Library. https://community.amstat.org/jointscsg-section/media/videos.
Asimov, D. (1985). The Grand Tour: A Tool for Viewing Multidimensional Data. SIAM Journal of Scientific and Statistical Computing, 6(1), 128–143.
Auguie, B. (2017). gridExtra: Miscellaneous functions for "grid" graphics. https://CRAN.R-project.org/package=gridExtra
Australian Bureau of Agricultural and Resource Economics and Sciences. (2018). Forests of Australia. https://www.agriculture.gov.au/abares/forestsaustralia/forest-data-maps-and-tools/spatial-data/forest-cover
Becker, R. A., & Chambers, J. M. (1984). S: An environment for data analysis and graphics. Wadsworth.
Becker, R. A., & Cleveland, W. S. (1988). Brushing Scatterplots. In W. S. Cleveland & M. E. McGill (Eds.), Dynamic graphics for statistics (pp. 201–224). Wadsworth.
Becker, R., Cleveland, W. S., & Shyu, M.-J. (1996). The Visual Design and Control of Trellis Displays. Journal of Computational and Graphical Statistics, 6(1), 123–155.
Bederson, B. B., & Schneiderman, B. (2003). The craft of information visualization: Readings and reflections. Morgan Kaufmann.
Bellman, R. (1961). Adaptive control processes : A guided tour.
Bickel, P. J., Kur, G., & Nadler, B. (2018). Projection pursuit in high dimensions. Proceedings of the National Academy of Sciences, 115, 9151–9156. https://doi.org/10.1073/pnas.1801177115
Bishop, C. M. (2006). Pattern Recognition and Machine Learning. Springer.
Boehmke, B., & Greenwell, B. M. (2019). Hands-on machine learning with r (1st ed.). Chapman; Hall/CRC. https://doi.org/10.1201/9780367816377
Boelaert, J., Ollion, E., & Sodoge, J. (2022). aweSOM: Interactive self-organizing maps. https://CRAN.R-project.org/package=aweSOM
Bonneau, G.-P., Ertl, T., & Nielson, G. M. (Eds.). (2006). Scientific visualization: The visual extraction of knowledge from data. Springer.
Borg, I., & Groenen, P. J. F. (2005). Modern Multidimensional Scaling. Springer.
Breiman, L. (2001). Random Forests. Machine Learning, 45(1), 5–32.
Breiman, L., Cutler, A., Liaw, A., & Wiener, M. (2022). randomForest: Breiman and cutler’s random forests for classification and regression. https://www.stat.berkeley.edu/~breiman/RandomForests/
Breiman, L., Friedman, J., Olshen, C., & Stone, C. (1984). Classification and Regression Trees. Wadsworth; Brooks/Cole.
Buja, A. (1996). Interactive Graphical Methods in the Analysis of Customer Panel Data: Comment. Journal of Business & Economic Statistics, 14(1), 128–129.
Buja, A., & Asimov, D. (1986). Grand Tour Methods: An Outline. Computing Science and Statistics, 17, 63–67.
Buja, A., Asimov, D., Hurley, C., & McDonald, J. A. (1988). Elements of a Viewing Pipeline for Data Analysis. In W. S. Cleveland & M. E. McGill (Eds.), Dynamic graphics for statistics (pp. 277–308). Wadsworth.
Buja, A., Cook, D., Asimov, D., & Hurley, C. (1997). Dynamic Projections in High-Dimensional Visualization: Theory and Computational Methods. AT&T Labs.
Buja, A., Cook, D., Asimov, D., & Hurley, C. (2005). Computational Methods for High-Dimensional Rotations in Data Visualization. In C. R. Rao, E. J. Wegman, & J. L. Solka (Eds.), Handbook of statistics: Data mining and visualization (pp. 391–414). Elsevier/North-Holland.
Buja, A., Cook, D., & Swayne, D. (1996). Interactive High-Dimensional Data Visualization. Journal of Computational and Graphical Statistics, 5(1), 78–99.
Buja, A., Hurley, C., & McDonald, J. A. (1986). A Data Viewer for Multivariate Data. Computing Science and Statistics, 17(1), 171–174.
Buja, A., & Swayne, D. F. (2002). Visualization Methodology for Multidimensional Scaling. Journal of Classification, 19(1), 7–43.
Buja, A., Swayne, D. F., Littman, M. L., Dean, N., Hofmann, H., & Chen, L. (2008). Data visualization with multidimensional scaling. Journal of Computational and Graphical Statistics, 17(2), 444–472. https://doi.org/10.1198/106186008X318440
Buja, A., & Tukey, P. (Eds.). (1991). Computing and Graphics in Statistics. Springer-Verlag.
Card, S. K., Mackinlay, J. D., & Schneiderman, B. (1999). Readings in information visualization. Morgan Kaufmann Publishers.
Carr, D. B., Wegman, E. J., & Luo, Q. (1996). ExplorN: Design Considerations Past and Present (Technical Report No. 129). Center for Computational Statistics, George Mason University.
Chatfield, C. (1995). Problem solving: A statistician’s guide. Chapman; Hall/CRC Press.
Chen, C., Härdle, W., & Unwin, A. (Eds.). (2006). Handbook of computational statistics (volume III) data visualization. Springer.
Chen, C.-H., Härdle, W., & Unwin, A. (Eds.). (2007). Handbook of Data Visualization. Springer.
Cheng, B., & Titterington, M. (1994). Neural Networks: A Review from a Statistical Perspective. Statistical Science, 9(1), 2–30.
Cheng, J., & Sievert, C. (2021). Crosstalk: Inter-widget interactivity for HTML widgets. https://rstudio.github.io/crosstalk/
Chernoff, H. (1973). The Use of Faces to Represent Points in \(k\)-dimensional Space Graphically. Journal of the American Statistical Association, 68, 361–368.
Cleveland, W. S. (1979). Robust Localy Weighted Regression and Smoothing Scatterplots. Journal of American Statistics Association, 74, 829–836.
Cleveland, W. S. (1993). Visualizing Data. Hobart Press.
Cleveland, W. S., & McGill, M. E. (Eds.). (1988). Dynamic graphics for statistics. Wadsworth.
Cook, D., & Buja, A. (1997). Manual Controls For High-Dimensional Data Projections. Journal of Computational and Graphical Statistics, 6(4), 464–480.
Cook, D., Buja, A., & Cabrera, J. (1993). Projection Pursuit Indexes Based on Orthonormal Function Expansions. Journal of Computational and Graphical Statistics, 2(3), 225–250.
Cook, D., Buja, A., Cabrera, J., & Hurley, C. (1995b). Grand Tour and Projection Pursuit. Journal of Computational and Graphical Statistics, 4(3), 155–172.
Cook, D., Buja, A., Cabrera, J., & Hurley, C. (1995a). Grand Tour and Projection Pursuit. Journal of Computational and Graphical Statistics, 4(3), 155–172.
Cook, D., Hofmann, H., Lee, E.-K., Yang, H., Nikolau, B., & Wurtele, E. (2007). Exploring Gene Expression Data, Using Plots. Journal of Data Science, 5(2), 151–182.
Cook, D., & Laa, U. (2023). Mulgar: Functions for pre-processing data for multivariate data visualisation using tours. https://dicook.github.io/mulgar/
Cook, D., Lee, E.-K., Buja, A., & Wickham, H. (2006). Grand Tours, Projection Pursuit Guided Tours and Manual Controls. In C.-H. Chen, W. Härdle, & A. Unwin (Eds.), Handbook of Data Visualization. Springer.
Cook, D., Majure, J. J., Symanzik, J., & Cressie, N. (1996). Dynamic Graphics in a GIS: Exploring and Analyzing Multivariate Spatial Data using Linked Software. Computational Statistics: Special Issue on Computer Aided Analyses of Spatial Data, 11(4), 467–480.
Cook, D., & Swayne, D. F. (2007). Interactive and dynamic graphics for data analysis: With R and GGobi. Springer-Verlag. https://doi.org/10.1007/978-0-387-71762-3
Cortes, C., Pregibon, D., & Volinsky, C. (2003). Computational Methods for Dynamic Graphs. Journal of Computational & Graphical Statistics, 12(4), 950–970.
Cortes, C., & Vapnik, V. N. (1995). Support-Vector Networks. Machine Learning, 20(3), 273–297.
d’Ocagne, M. (1885). Coordonnées Parallèles et Axiales: Méthode de transformation géométrique et procédé nouveau de calcul graphique déduits de la considération des coordonnées paralléles. Gauthier-Villars.
Dalgaard, P. (2002). Introductory statistics with R. Springer.
Dasu, T., Swayne, D. F., & Poole, D. (2005). Grouping Multivariate Time Series: A Case Study. Proceedings of the IEEE Workshop on Temporal Data Mining: Algorithms, Theory and Applications, in Conjunction with the Conference on Data Mining, Houston, November 27, 2005, 25–32.
de Vries, A., & Ripley, B. D. (2022). Ggdendro: Create dendrograms and tree diagrams using ggplot2. https://github.com/andrie/ggdendro
Department of Environment, Land, Water & Planning. (2019). Fire Origins - Current and Historical. https://discover.data.vic.gov.au/dataset/fire-origins-current-and-historical
Department of Environment, Land, Water & Planning. (2020a). CFA - Fire Station. https://discover.data.vic.gov.au/dataset/cfa-fire-station-vmfeat-geomark_point
Department of Environment, Land, Water & Planning. (2020b). Recreation Sites. https://discover.data.vic.gov.au/dataset/recreation-sites
Diaconis, P., & Freedman, D. (1984a). Asymptotics of Graphical Projection Pursuit. Annals of Statistics, 12, 793–815.
Diaconis, P., & Freedman, D. (1984b). Asymptotics of graphical projection pursuit. Annals of Statistics, 12(3), 793–815. https://doi.org/10.1214/aos/1176346703
Dykes, J., MacEachren, A. M., & Kraak, M.-J. (2005). Exploring geovisualization. Elsevier.
Everitt, B. S., Landau, S., & Leese, M. (2001). Cluster Analysis (4th ed). Edward Arnold.
Fienberg, S. E. (1979). Graphical Methods in Statistics. Journal of American Statistical Association, 33(4), 165–178.
Fisher, R. A. (1936a). The Use of Multiple Measurements in Taxonomic Problems. Annals of Eugenics, 7, 179–188.
Fisher, R. A. (1936b). The use of multiple measurements in taxonomic problems. Annals of Eugenics, 7(2), 179–188. https://doi.org/10.1111/j.1469-1809.1936.tb02137.x
Fisher, R. A. (1938). The Statistical Utilization of Multiple Measurements. Annals of Eugenics, 8, 376–386.
Fisherkeller, M. A., Friedman, J. H., & Tukey, J. W. (1973). PRIM-9, an interactive multidimensional data display and analysis system. https://www.youtube.com/watch?v=B7XoW2qiFUA
Fisherkeller, M. A., Friedman, J. H., & Tukey, J. W. (1974). PRIM-9, an interactive multidimensional data display and analysis system. In W. S. Cleveland (Ed.), The collected works of john w. Tukey: Graphics 1965-1985, volume v (pp. 340–346).
Forbes, J., Cook, D., & Hyndman, R. J. (2020). Spatial modelling of the two-party preferred vote in australian federal elections: 2001–2016. Australian & New Zealand Journal of Statistics, 62(2), 168–185. https://doi.org/https://doi.org/10.1111/anzs.12292
Ford, B. J. (1992). Images of science: A history of scientific illustration. The British Library.
Forgy, E. (1965). Cluster analysis of multivariate data: Efficiency versus interpretability of classification. Biometrics, 21(3), 768–769.
Fraley, C., & Raftery, A. E. (2002). Model-based Clustering, Discriminant Analysis, Density Estimation. Journal of the American Statistical Association, 97, 611–631.
Fraley, C., Raftery, A. E., & Scrucca, L. (2022). Mclust: Gaussian mixture modelling for model-based clustering, classification, and density estimation. https://mclust-org.github.io/mclust/
Friedman, J. H. (1987). Exploratory Projection Pursuit. Journal of American Statistical Association, 82, 249–266.
Friedman, J. H., & Tukey, J. W. (1974). A Projection Pursuit Algorithm for Exploratory Data Analysis. IEEE Transactions on Computing C, 23, 881–889.
Friendly, M., & Denis, D. J. (2004). Milestones in the history of thematic cartography, statistical graphics, and data visualization. http://www.math.yorku.ca/SCS/Gallery/milestone/.
Fritsch, S., Guenther, F., & Wright, M. N. (2019). Neuralnet: Training of neural networks. https://CRAN.R-project.org/package=neuralnet
Furnas, G. W., & Buja, A. (1994). Prosection Views: Dimensional Inference Through Sections and Projections. Journal of Computational and Graphical Statistics, 3(4), 323–385.
Gabriel, K. R. (1971). The Biplot Graphical Display of Matrices with Applications to Principal Component Analysis. Biometrika, 58, 453–467.
Gentle, J. E., Härdle, W., & Mori, Y. (Eds.). (2004). Handbook of computational statistics: Concepts and methods. Springer.
Giordani, P., Ferraro, M. B., & Martella, F. (2020). An introduction to clustering with r. Springer Singapore. https://doi.org/10.1007/978-981-13-0553-5
Glover, D. M., & Hopke, P. K. (1992). Exploration of Multivariate Chemical Data by Projection Pursuit. Chemometrics and Intelligent Laboratory Systems, 16, 45–59.
Good, P. (2005). Permutation, Parametric, and Bootstrap Tests of Hypotheses. Springer.
Gower, J. C., & Hand, D. J. (1996). Biplots. Chapman; Hall.
Hajibaba, H., Karlsson, L., & Dolnicar, S. (2016). Residents open their homes to tourists when disaster strikes. Journal of Travel Research, 56(8), 1065–1078.
Hansen, C., & Johnson, C. R. (2004). Visualization handbook. Academic Press.
Harrison, P. (2023a). Langevitour: Langevin tour. https://logarithmic.net/langevitour/
Harrison, P. (2023b). Langevitour: Smooth interactive touring of high dimensions, demonstrated with scRNA-seq data. The R Journal, 15(2), 206–219. https://doi.org/10.32614/RJ-2023-046
Hart, C., & Wang, E. (2022). Detourr: Portable and performant tour animations. https://casperhart.github.io/detourr/
Hartigan, J. A., & Kleiner, B. (1981). Mosaics for Contingency Tables. Computer Science and Statistics: Proceedings of the 13th Symposium on the Interface, 268–273.
Hartigan, J., & Kleiner, B. (1984). A Mosaic of Television Ratings. The American Statistician, 38, 32–35.
Haslett, J., Bradley, R., Craig, P., Unwin, A., & Wills, G. (1991). Dynamic Graphics for Exploring Spatial Data with Application to Locating Global and Local Anomalies. The American Statistician, 45(3), 234–242.
Hastie, T., Tibshirani, R., & Friedman, J. (2001). The Elements of Statistical Learning. Springer.
Hennig, C., Meila, M., Murtagh, F., & Rocci, R. (Eds.). (2015). Handbook of cluster analysis. Chapman; Hall/CRC. https://doi.org/10.1201/b19706
Hofmann, H. (2001). Graphical Tools for the Exploration of Multivariate Categorical Data. Books on Demand.
Hofmann, H. (2003). Constructing and Reading Mosaicplots. Computational Statistics and Data Analysis, 43(4), 565–580.
Hofmann, H., & Theus, M. (1998). Selection Sequences in MANET. Computational Statistics, 13(1), 77–87.
Horikoshi, M., & Tang, Y. (2018). Ggfortify: Data visualization tools for statistical analysis results. https://CRAN.R-project.org/package=ggfortify
Horikoshi, M., & Tang, Y. (2023). Ggfortify: Data visualization tools for statistical analysis results. https://github.com/sinhrks/ggfortify
Horst, A., Hill, A., & Gorman, K. (2022). Palmerpenguins: Palmer archipelago (antarctica) penguin data. https://CRAN.R-project.org/package=palmerpenguins
Hotelling, H. (1933). Analysis of a complex of statistical variables into principal components. Journal of Educational Psychology, 24(6), 417--441. https://doi.org/10.1037/h0071325
Huber, P. J. (1985). Projection Pursuit (with discussion). Annals of Statistics, 13, 435–525.
Hurley, C. (1987). The data viewer: An interactive program for data analysis [PhD thesis]. University of Washington.
Iannone, R., Cheng, J., Schloerke, B., Hughes, E., Lauer, A., & Seo, J. (2023). Gt: Easily create presentation-ready display tables. https://CRAN.R-project.org/package=gt
Ihaka, R., & Gentleman, R. (1996). R: A Language for Data Analysis and Graphics. Journal of Computational and Graphical Statistics, 5, 299–314.
Ihaka, R., Murrell, P., Hornik, K., Fisher, J. C., Stauffer, R., Wilke, C. O., McWhite, C. D., & Zeileis, A. (2023). Colorspace: A toolbox for manipulating and assessing colors and palettes. https://CRAN.R-project.org/package=colorspace
Inselberg, A. (1985). The Plane with Parallel Coordinates. The Visual Computer, 1, 69–91.
Iowa State University. (2020). ASOS-AWOS-METAR data download. https://mesonet.agron.iastate.edu/request/download.phtml?network=AU__ASOS
Johnson, D., & Travis, J. (2007). Flatland: The movie. https://round-drum-w7xh.squarespace.com/our-story.
Johnson, R. A., & Wichern, D. W. (2002). Applied multivariate statistical analysis (5th ed). Prentice-Hall.
Jolliffe, I. T., & Cadima, J. (2016). Principal component analysis: A review and recent developments. Phil. Trans. R. Soc. A., 374, 20150202. https://doi.org/10.1098/rsta.2015.0202
Jones, M. C., & Sibson, R. (1987). What is Projection Pursuit? (With discussion). Journal of the Royal Statistical Society, Series A, 150, 1–36.
Kassambara, A. (2017). Practical guide to cluster analysis in r: Unsupervised machine learning. STHDA.
Kassambara, A. (2023). Ggpubr: ggplot2 based publication ready plots. https://rpkgs.datanovia.com/ggpubr/
Kohonen, T. (2001). Self-Organizing Maps (3rd ed). Springer.
Koschat, M. A., & Swayne, D. F. (1996). Interactive Graphical Methods in the Analysis of Customer Panel Data (with discussion). Journal of Business and Economic Statistics, 14(1), 113–132.
Krijthe, J. (2022). Rtsne: T-distributed stochastic neighbor embedding using a barnes-hut implementation. https://github.com/jkrijthe/Rtsne
Kruskal, J. B. (1964a). Multidimensional Scaling by Optimizing Goodness of Fit to a Nonmetric Hypothesis. Psychometrika, 29, 1–27.
Kruskal, J. B. (1964b). Nonmetric Multidimensional Scaling: A Numerical Method. Psychometrika, 29, 115–129.
Kruskal, J. B., & Wish, M. (1978). Multidimensional Scaling. Sage Publications.
Kuhn, M., & Wickham, H. (2020). Tidymodels: A collection of packages for modeling and machine learning using tidyverse principles. https://www.tidymodels.org
Kuhn, M., & Wickham, H. (2023). Tidymodels: Easily install and load the tidymodels packages. https://CRAN.R-project.org/package=tidymodels
Laa, U., Cook, D., & Lee, S. (2022). Burning sage: Reversing the curse of dimensionality in the visualization of high-dimensional data. Journal of Computational and Graphical Statistics, 31(1), 40–49. https://doi.org/10.1080/10618600.2021.1963264
Laa, U., Cook, D., & Valencia, G. (2020a). A slice tour for finding hollowness in high-dimensional data. Journal of Computational and Graphical Statistics, 29(3), 681–687. https://doi.org/10.1080/10618600.2020.1777140
Laa, U., Cook, D., & Valencia, G. (2020b). A slice tour for finding hollowness in high-dimensional data. Journal of Computational and Graphical Statistics, 29(3), 681–687. https://doi.org/10.1080/10618600.2020.1777140
Lancaster, H. O. (1965). The helmert matrices. The American Mathematical Monthly, 72(1), 4–12.
Laurent, S. (2023). Cxhull: Convex hull. https://github.com/stla/cxhull
Lee, E.-K. (2018). PPtreeViz: An r package for visualizing projection pursuit classification trees. Journal of Statistical Software, 83(8), 1–30. https://doi.org/10.18637/jss.v083.i08
Lee, E.-K., & Cook, D. (2009). A projection pursuit index for large \(p\) small \(n\) data. Statistics and Computing, 20, 381–392. https://doi.org/10.1007/s11222-009-9131-1
Lee, E.-K., Cook, D., Klinke, S., & Lumley, T. (2005). Projection Pursuit for Exploratory Supervised Classification. Journal of Computational and Graphical Statistics, 14(4), 831–846.
Lee, S. (2021). Liminal: Multivariate data visualization with tours and embeddings. https://CRAN.R-project.org/package=liminal
Lee, S., Cook, D., Silva, N. da, Laa, U., Spyrison, N., Wang, E., & Zhang, H. S. (2022). The state-of-the-art on tours for dynamic visualization of high-dimensional data. WIREs Computational Statistics, 14(4), e1573. https://doi.org/10.1002/wics.1573
Lee, Y. D., Cook, D., Park, J., & Lee, E.-K. (2013). PPtree: Projection pursuit classification tree. Electronic Journal of Statistics, 7(none), 1369–1386. https://doi.org/10.1214/13-EJS810
Leisch, F., & Gruen, B. (2023). CRAN task view: Cluster analysis & finite mixture models. https://cran.r-project.org/web/views/Cluster.html.
Leisch, F., & Grün, B. (2020). MSA: Market segmentation analysis.
Li, M., Zhao, Z., & Scheidegger, C. (2020). Visualizing neural networks with the grand tour. Distill. https://doi.org/10.23915/distill.00025
Liaw, A., & Wiener, M. (2002). Classification and regression by randomForest. R News, 2(3), 18–22. https://CRAN.R-project.org/doc/Rnews/
Littman, M. L., Swayne, D. F., Dean, N., & Buja, A. (1992). Visualizing the Embedding of Objects in Euclidean Space. Computing Science and Statistics: Proceedings of the 24th Symposium on the Interface, 208–217.
Lloyd, S. (1982). Least squares quantization in PCM. IEEE Transactions on Information Theory, 28(2), 129–137. https://doi.org/10.1109/TIT.1982.1056489
Longley, P. A., Maguire, D. J., Goodchild, M. F., & Rhind, D. W. (2005). Geographic information systems and science. John Wiley & Sons.
Loperfido, N. (2018). Skewness-based projection pursuit: A computational approach. Computational Statistics & Data Analysis, 120, 42–57. https://doi.org/https://doi.org/10.1016/j.csda.2017.11.001
Maaten, L. van der, & Hinton, G. (2008). Visualizing data using t-SNE. J. Mach. Learn. Res., 9(Nov), 2579–2605. http://www.jmlr.org/papers/v9/vandermaaten08a.html
MacQueen, J. B. (1967). Some methods for classification and analysis of multivariate observations. In L. M. L. Cam & J. Neyman (Eds.), Proc. Of the fifth berkeley symposium on mathematical statistics and probability (Vol. 1, pp. 281–297). University of California Press.
Maindonald, J., & Braun, J. (2003). Data analysis and graphics using r - an example-based approach. Cambridge University Press.
Martin, E. (1965). Flatland. http://www.der.org/films/flatland.html.
Mayer, M., & Watson, D. (2023). Kernelshap: Kernel SHAP. https://CRAN.R-project.org/package=kernelshap
McFarlane, M., & Young, F. W. (1994). Graphical Sensitivity Analysis for Multidimensional Scaling. Journal of Computational and Graphical Statistics, 3, 23–33.
McInnes, L., Healy, J., & Melville, J. (2018). UMAP: Uniform manifold approximation and projection for dimension reduction. http://arxiv.org/abs/1802.03426
McNeil, D. (1977). Interactive Data Analysis. John Wiley & Sons.
McVicar, T. (2011). Near-surface wind speed. v10. CSIRO. Data collection. https://doi.org/10.25919/5c5106acbcb02
Meyer, D., Dimitriadou, E., Hornik, K., Weingessel, A., & Leisch, F. (2023). e1071: Misc functions of the department of statistics, probability theory group (formerly: E1071), TU wien. https://CRAN.R-project.org/package=e1071
Milborrow, S. (2022). Rpart.plot: Plot rpart models: An enhanced version of plot.rpart. http://www.milbo.org/rpart-plot/index.html
Mock, T. (2022). gtExtras: Extending gt for beautiful HTML tables. https://CRAN.R-project.org/package=gtExtras
Molnar, C. (2022). Interpretable machine learning: A guide for making black box models explainable (2nd ed). https://christophm.github.io/interpretable-ml-book/.
Moon, K. R., Dijk, D. van, Wang, Z., Gigante, S., Burkhardt, D. B., Chen, W. S., Yim, K., Elzen, A. van den, Hirn, M. J., Coifman, R. R., Ivanova, N. B., Wolf, G., & Krishnaswamy, S. (2019). Visualizing structure and transitions for biological data exploration. Nature Biotechnology, 37, 1482–1492. https://doi.org/10.1038/s41587-019-0336-3
Murrell, P. (2005). R graphics. Chapman & Hall/CRC.
OpenStreetMap contributors. (2020). Planet dump retrieved from https://planet.osm.org . https://www.openstreetmap.org.
Pearson, K. (1901). LIII. On lines and planes of closest fit to systems of points in space. The London, Edinburgh, and Dublin Philosophical Magazine and Journal of Science, 2(11), 559–572. https://doi.org/10.1080/14786440109462720
Pedersen, T. L. (2023). Patchwork: The composer of plots. https://CRAN.R-project.org/package=patchwork
Perisic, I., & Posse, C. (2005). Projection pursuit indices based on the empirical distribution function. Journal of Computational and Graphical Statistics, 14(3), 700–715. https://doi.org/10.1198/106186005X69440
Polzehl, J. (1995). Projection Pursuit Discriminant Analysis. Computational Statistics and Data Analysis, 20, 141–157.
Posse, C. (1992). Projection Pursuit Discriminant Analysis for Two Groups. Communications in Statistics, Part A – Theory and Methods, 21, 1–19.
Posse, C. (1995). Tools for Two-dimensional Projection Pursuit. Journal of Computational and Graphical Statistics, 4(2), 83–100.
P-Tree System. (2020). JAXA Himawari Monitor - User’s Guide. https://www.eorc.jaxa.jp/ptree/userguide.html
R Core Team. (2023). R: A language and environment for statistical computing. R Foundation for Statistical Computing. https://www.R-project.org/
Rao, C. R. (1948). The Utilization of Multiple Measurements in Problems of Biological Classification (with discussion). Journal of the Royal Statistical Society, Series B, 10, 159–203.
Rao, C. R. (Ed.). (1993). Handbook of Statistics, Vol. 9. Elsevier Science Publishers.
Rao, C. R., Wegman, E. J., & Solka, J. L. (Eds.). (2006). Handbook of Statistics: Data Mining and Visualization. Elsevier/North-Holland.
Ripley, B. (1996). Pattern Recognition and Neural Networks. Cambridge University Press.
Ripley, B. (2023a). MASS: Support functions and datasets for venables and ripley’s MASS. http://www.stats.ox.ac.uk/pub/MASS4/
Ripley, B. (2023b). Nnet: Feed-forward neural networks and multinomial log-linear models. http://www.stats.ox.ac.uk/pub/MASS4/
Rothkopf, E. Z. (1957). A Measure of Stimulus Similarity and Errors in Some Paired-associate Learning Tasks. Journal of Experimental Psychology, 53, 94–101.
Schloerke, B. (2016). Geozoo: Zoo of geometric objects. https://CRAN.R-project.org/package=geozoo
Schloerke, B., Cook, D., Larmarange, J., Briatte, F., Marbach, M., Thoen, E., Elberg, A., & Crowley, J. (2023). GGally: Extension to ggplot2. https://ggobi.github.io/ggally/
Scrucca, L., Fop, M., Murphy, T. B., & Raftery, A. E. (2016). mclust 5: Clustering, classification and density estimation using Gaussian finite mixture models. The R Journal, 8(1), 289–317. https://doi.org/10.32614/RJ-2016-021
Shepard, R. N. (1962). The Analysis of Proximities: Multidimensional Scaling with an Unknown Distance Function, I and II. Psychometrika, 27, 125-139 and 219-246.
Sievert, C. (2020). Interactive web-based data visualization with r, plotly, and shiny. Chapman; Hall/CRC. https://plotly-r.com
Sievert, C., Parmer, C., Hocking, T., Chamberlain, S., Ram, K., Corvellec, M., & Despouy, P. (2023). Plotly: Create interactive web graphics via plotly.js. https://CRAN.R-project.org/package=plotly
Sjoberg, D. D., Larmarange, J., Curry, M., Lavery, J., Whiting, K., & Zabor, E. C. (2023). Gtsummary: Presentation-ready data summary and analytic result tables. https://CRAN.R-project.org/package=gtsummary
Sjoberg, D. D., Whiting, K., Curry, M., Lavery, J. A., & Larmarange, J. (2021). Reproducible summary tables with the gtsummary package. The R Journal, 13, 570–580. https://doi.org/10.32614/RJ-2021-053
Slowikowski, K. (2023). Ggrepel: Automatically position non-overlapping text labels with ggplot2. https://github.com/slowkow/ggrepel
Sparks, A. H., Carroll, J., Goldie, J., Marchiori, D., Melloy, P., Padgham, M., Parsonage, H., & Pembleton, K. (2020). bomrang: Australian government bureau of meteorology (BOM) data client. https://CRAN.R-project.org/package=bomrang
Spence, R. (2007). Information visualization: Design for interaction. Prentice Hall.
Stauffer, R., Mayr, G. J., Dabernig, M., & Zeileis, A. (2009). Somewhere over the rainbow: How to make effective use of colors in meteorological visualizations. Bulletin of the American Meteorological Society, 96(2), 203–216. https://doi.org/10.1175/BAMS-D-13-00155.1
Sutherland, P., Rossini, A., Lumley, T., Lewin-Koh, N., Dickerson, J., Cox, Z., & Cook, D. (2000a). Orca: A Visualization Toolkit for High-Dimensional Data. Journal of Computational and Graphical Statistics, 9(3), 509–529.
Sutherland, P., Rossini, A., Lumley, T., Lewin-Koh, N., Dickerson, J., Cox, Z., & Cook, D. (2000b). Orca: A visualization toolkit for high-dimensional data. Journal of Computational and Graphical Statistics, 9(3), 509–529. https://doi.org/10.1080/10618600.2000.10474896
Swayne, D. F., Buja, A., & Temple Lang, D. (2004). Exploratory visual analysis of graphs in GGobi. In J. Antoch (Ed.), CompStat: Proceedings in computational statistics, 16th symposium. Physica-Verlag.
Swayne, D. F., Cook, D., & Buja, A. (1992). XGobi: Interactive Dynamic Graphics in the X Window System with a Link to S. American Statistical Association 1991 Proceedings of the Section on Statistical Graphics, 1–8.
Swayne, D. F., Cook, D., & Buja, A. (1998). XGobi: Interactive dynamic data visualization in the x window system. Journal of Computational and Graphical Statistics, 7(1), 113–130. https://doi.org/10.1080/10618600.1998.10474764
Swayne, D. F., & Klinke, S. (1998). Editorial commentary. Computational Statistics: Special Issue on The Use of Interactive Graphics, 14(1).
Swayne, D. F., Temple Lang, D., Buja, A., & Cook, D. (2003). GGobi: Evolving from XGobi into an Extensible Framework for Interactive Data Visualization. Computational Statistics & Data Analysis, 43, 423–444.
Swayne, D., & Buja, A. (1998). Missing Data in Interactive High-Dimensional Data Visualization. Computational Statistics, 13(1), 15–26.
Symanzik, J. (2002). New applications of the image grand tour. Computing Science and Statistics, 34, 500--512. https://math.usu.edu/symanzik/papers/2002_interface.pdf
Symanzik, J. (2004). Interactive and Dynamic Graphics. In J. E. Gentle, W. Härdle, & Y. Mori (Eds.), Handbook of computational statistics: Concepts and methods (pp. 293–336). Springer.
Takatsuka, M., & Gahegan, M. (2002). GeoVISTA Studio: A Codeless Visual Programming Environment for Geoscientific Data Analysis and Visualization. The Journal of Computers and Geosciences, 28(10), 1131–1144.
Tang, Y., Horikoshi, M., & Li, W. (2016). Ggfortify: Unified interface to visualize statistical result of popular r packages. The R Journal, 8(2), 474–485. https://doi.org/10.32614/RJ-2016-060
Tarpey, T., Li, L., & Flury, B. (1995). Principal points and self–consistent points of elliptical distributions. The Annals of Statistics, 23, 103–112.
Temple Lang, D., Swayne, D., Wickham, H., & Lawrence, M. (2006).
rggobi
: An Interface between R and GGobi. http://www.R-project.org
.
Therneau, T., & Atkinson, B. (2023). Rpart: Recursive partitioning and regression trees. https://CRAN.R-project.org/package=rpart
Theus, M. (2002). Interactive Data Visualization Using Mondrian. Journal of Statistical Software, 7(11), http://www.jstatsoft.org.
Theus, M., Hofmann, H., & Wilhelm, A. F. X. (1998). Selection Sequences – Interactive Analysis of Massive Data Sets. Computing Science and Statistics, 29(1), 439–444.
Thompson, G. L. (1993). Generalized Permutation Polytopes and Exploratory Graphical Methods for Ranked Data. The Annals of Statistics, 21, 1401–1430.
Tierney, L. (1991). LispStat: An Object-Orientated Environment for Statistical Computing and Dynamic Graphics. John Wiley & Sons.
Tierney, N., & Cook, D. (2023a). Expanding tidy data principles to facilitate missing data exploration, visualization and assessment of imputations. Journal of Statistical Software, 105(7), 1–31. https://doi.org/10.18637/jss.v105.i07
Tierney, N., & Cook, D. (2023b). Expanding tidy data principles to facilitate missing data exploration, visualization and assessment of imputations. Journal of Statistical Software, 105(7), 1–31. https://doi.org/10.18637/jss.v105.i07
Tierney, N., Cook, D., McBain, M., & Fay, C. (2023). Naniar: Data structures, summaries, and visualisations for missing data. https://github.com/njtierney/naniar
Torgerson, W. S. (1952). Multidimensional Scaling. 1. Theory and Method. Psychometrika, 17, 401–419.
Tufte, E. (1983). The visual display of quantitative information. Graphics Press.
Tufte, E. (1990). Envisioning information. Graphics Press.
Tukey, J. W. (1965). The Technical Tools of Statistics. The American Statistician, 19, 23–28.
Unwin, A. R., Hawkins, G., Hofmann, H., & Siegl, B. (1996). Interactive Graphics for Data Sets with Missing Values - MANET. Journal of Computational and Graphical Statistics, 5(2), 113–122.
Unwin, A., Hofmann, H., & Wilhelm, A. (2002). Direct Manipulation Graphics for Data Mining. Journal of Image and Graphics, 2(1), 49–65.
Unwin, A., Theus, M., & Hofmann, H. (2006). Graphics of Large Datasets: Visualizing a Million. Springer.
Unwin, A., Volinsky, C., & Winkler, S. (2003). Parallel Coordinates for Exploratory Modelling Analysis. Comput. Stat. Data Anal., 43(4), 553–564. https://doi.org/{\tt http://dx.doi.org/10.1016/S0167-9473(02)00292-X}
Urbanek, S., & Theus, M. (2003). iPlots: High Interaction Graphics for R. In K. Hornik, F. Leisch, & A. Zeileis (Eds.), Proceedings of the 3rd international workshop on distributed statistical computing (DSC 2003).
Vaidyanathan, R., Xie, Y., Allaire, J., Cheng, J., Sievert, C., & Russell, K. (2023). Htmlwidgets: HTML widgets for r. https://github.com/ramnathv/htmlwidgets
van der Maaten, L. J. P. (2014). Accelerating t-SNE using tree-based algorithms. Journal of Machine Learning Research, 15, 3221–3245.
van der Maaten, L. J. P., & Hinton, G. E. (2008). Visualizing high-dimensional data using t-SNE. Journal of Machine Learning Research, 9, 2579–2605.
Vapnik, V. N. (1999). The Nature of Statistical Learning Theory. Springer.
Velleman, P. F., & Velleman, A. Y. (1985). Data desk handbook. Data Description, Inc.
Venables, W. N., & Ripley, B. (2002a). Modern Applied Statistics with S. Springer-Verlag.
Venables, W. N., & Ripley, B. D. (2002b). Modern applied statistics with s (Fourth). Springer. https://www.stats.ox.ac.uk/pub/MASS4/
Venables, W. N., & Ripley, B. D. (2002c). Modern applied statistics with s (Fourth). Springer. https://www.stats.ox.ac.uk/pub/MASS4/
Wainer, H. (2000). Visual Revelations (2nd ed). LEA, Inc.
Wainer, H., & Spence, I. (eds). (2005a). The Commercial and Political Atlas, Representing, by means of Stained Copper-Plate Charts, The Progress of the Commerce, Revenues, Expenditure, and Debts of England, during the whole of the Eighteenth Century, by William Playfair. Cambridge University Press.
Wainer, H., & Spence, I. (eds). (2005b). The Statistical Breviary; Shewing on a Principle entirely new, the resources of every state and kingdom in Europe; illustrated with Stained Copper-Plate Charts, representing the physical powers of each distinct nation with ease and perspicuity by William Playfair. Cambridge University Press.
Wang, P. C. C. (Ed.). (1978). Graphical Representation of Multivariate Data. Academic Press.
Wegman, E. (1990). Hyperdimensional Data Analysis Using Parallel Coordinates. Journal of American Statistics Association, 85, 664–675.
Wegman, E. J. (1991). The Grand Tour in \(k\)-Dimensions (Technical Report No. 68). Center for Computational Statistics, George Mason University.
Wegman, E. J., & Carr, D. B. (1993). Statistical Graphics and Visualization (C. R. Rao, Ed.; pp. 857–958). Elsevier Science Publishers.
Wegman, E. J., Poston, W. L., & Solka, J. L. (1998). Image Grand Tour. Automatic Target Recognition VIII - Proceedings of SPIE, 3371, 286–294.
Wehrens, R., & Buydens, L. M. C. (2007). Self- and super-organizing maps in R: The kohonen package. Journal of Statistical Software, 21(5), 1–19. https://doi.org/10.18637/jss.v021.i05
Wehrens, R., & Kruisselbrink, J. (2018). Flexible self-organizing maps in kohonen 3.0. Journal of Statistical Software, 87(7), 1–18. https://doi.org/10.18637/jss.v087.i07
Wehrens, R., & Kruisselbrink, J. (2023). Kohonen: Supervised and unsupervised self-organising maps. https://CRAN.R-project.org/package=kohonen
Wickham, H. (2016). ggplot2: Elegant graphics for data analysis. Springer-Verlag New York. https://ggplot2.tidyverse.org
Wickham, H. (2022). Classifly: Explore classification models in high dimensions. http://had.co.nz/classifly
Wickham, H., Chang, W., Henry, L., Pedersen, T. L., Takahashi, K., Wilke, C., Woo, K., Yutani, H., & Dunnington, D. (2023). ggplot2: Create elegant data visualisations using the grammar of graphics. https://CRAN.R-project.org/package=ggplot2
Wickham, H., & Cook, D. (2024). Tourr: Tour methods for multivariate data visualisation. https://github.com/ggobi/tourr
Wickham, H., Cook, D., & Hofmann, H. (2015). Visualizing statistical models: Removing the blindfold. Statistical Analysis and Data Mining: The ASA Data Science Journal, 8(4), 203–225. https://doi.org/10.1002/sam.11271
Wickham, H., Cook, D., Hofmann, H., & Buja, A. (2011a). Tourr: An R Package for Exploring Multivariate Data with Projections. Journal of Statistical Software, 40(2). https://doi.org/10.18637/jss.v040.i02
Wickham, H., Cook, D., Hofmann, H., & Buja, A. (2011b). tourr: An R package for exploring multivariate data with projections. Journal of Statistical Software, 40(2), 1–18. https://doi.org/10.18637/jss.v040.i02
Wickham, H., François, R., Henry, L., Müller, K., & Vaughan, D. (2023). Dplyr: A grammar of data manipulation. https://CRAN.R-project.org/package=dplyr
Wickham, H., Hester, J., & Bryan, J. (2023). Readr: Read rectangular text data. https://CRAN.R-project.org/package=readr
Wilhelm, A. F. X., Wegman, E. J., & Symanzik, J. (1999). Visual Clustering and Classification: The Oronsay Particle Size Data Set Revisited. Computational Statistics: Special Issue on Interactive Graphical Data Analysis, 14(1), 109–146.
Wilkinson, L. (2005). The grammar of graphics. Springer.
Wills, G. (1999). NicheWorks – Interactive Visualization of Very Large Graphs. Journal of Computational and Graphical Statistics, 8(2), 190–212.
Xie, Y., Hofmann, H., & Cheng, X. (2014). Reactive Programming for Interactive Graphics. Statistical Science, 29(2), 201–213. https://doi.org/10.1214/14-STS477
Young, F. W., Valero-Mora, P. M., & Friendly, M. (2006). Visual Statistics: Seeing Data with Dynamic Interactive Graphics. John Wiley & Sons.
Zeileis, A., Fisher, J. C., Hornik, K., Ihaka, R., McWhite, C. D., Murrell, P., Stauffer, R., & Wilke, C. O. (2020). colorspace: A toolbox for manipulating and assessing colors and palettes. Journal of Statistical Software, 96(1), 1–49. https://doi.org/10.18637/jss.v096.i01
Zeileis, A., Hornik, K., & Murrell, P. (2009). Escaping RGBland: Selecting colors for statistical graphics. Computational Statistics & Data Analysis, 53(9), 3259–3270. https://doi.org/10.1016/j.csda.2008.11.033
Zhang, C., Ye, J., & Wang, X. (2023). A computational perspective on projection pursuit in high dimensions: Feasible or infeasible feature extraction. International Statistical Review, 91(1), 140–161. https://doi.org/10.1111/insr.12517
Zhang, H. S., Cook, D., Laa, U., Langrené, N., & Menéndez, P. (2021). Visual diagnostics for constrained optimisation with application to guided tours. The R Journal, 13(2), 624–641. https://doi.org/10.32614/RJ-2021-105
Zhang, H. S., Cook, D., Laa, U., Langrené, N., & Menéndez, P. (2022). Ferrn: Facilitate exploration of touRR optimisatioN. https://github.com/huizezhang-sherry/ferrn/
Zhu, H. (2021). kableExtra: Construct complex table with kable and pipe syntax. https://CRAN.R-project.org/package=kableExtra