ntroduction	Methods available in R	Rmalschains	Experimental comparison	Conclusions

Continuous Global Optimization in R

Christoph Bergmeir

Faculty of Information Technology Monash University

Introduction	Methods available in R	Rmalschains	Experimental comparison	Conclusions o
Outline				

- Methods available in R for global optimization
- Our package Rmalschains
- Experimental comparison of methods

5 Conclusions

Introduction	Methods available in R	Rmalschains	Experimental comparison	Conclusions o
Reference	ces			

Contents of this talk:

C. Bergmeir, D. Molina, and J.M. Benítez. Memetic Algorithms with Local Search Chains in R: The Rmalschains Package. Journal of Statistical Software, (conditionally accepted for publication).

Journal of Statistical Software, Vol. 60 (2014). Special Volume: Numerical Optimization in R: Beyond optim

Introduction ○●	Methods available in R	Rmalschains	Experimental comparison	Conclusions o
Global op	otimization			

- Function minimization (maximization)
- Functions can be convex or non-convex
- Essentially smooth functions
- No constraints, or at most bounds constraints, on the parameters

2 dimensional Rastrigin function

Introduction	Methods available in R ●○○	Rmalschains 00	Experimental comparison	Conclusions o
R default	capabilities:	optim		

- The function optim provides basic optimization capabilities
- It is among the most widely used functions in R
- Methods in optim were developed 40 years ago, have known shortcomings
- Nowadays a host of choices exists, see CRAN Task View "Optimization"

Unfortunately [...], the default tools are not best practice, and the model of an aging default collection and an unstructured, largely un-mapped host of contributed packages is at best unattractive. (Nash, 2014)

Introduction	Methods available in R	Rmalschains 00	Experimental comparison	Conclusions o

Methods in optim and some shortcomings

- Contains solvers "Nelder-Mead", "BFGS", "CG", "L-BFGS-B", "SANN", ("Brent", for one-dimensional problems only)
- "BFGS", "CG", "L-BFGS-B" use derivatives, solve convex problems.
- "L-BFGS-B": a newer version of the algorithm was made available by the original authors in the meantime
- "SANN": the simulated annealing variant [...] is known to be insufficient in many respects (comment of a reviewer of our paper)
- "Nelder-Mead": Other implementations of the algorithm exist (at least) in packages **neldermead**, **dfoptim**, **gsl**, **adagio**, and **nloptr**.

Introduction	Methods available in R	Rmalschains	Experimental comparison	Conclusions
00	oo●	00		O
State-of-t optimizat	he-art method ion	s in R for (global (non-con	vex)

- optimx is a more modern replacement for optim.
- CMA-ES: Covariance Matrix Adaptation Evolution Strategy. (packages **cmaes**, **adagio**, and **parma**). Package **cmaes** is arguably a basic implementation that shouldn't be used.
- Differential evolution (packages DEoptim, RcppDE).
 RcppDE is a port of DEoptim from C to C++ (using Rcpp). Same results, claimed to be faster.
- Generalized Simulated Annealing (package GenSA)
- Genetic algorithms (package rgenoud)
- MA-LS-Chains (package Rmalschains)

Introduction	Methods available in R	Rmalschains ●○	Experimental comparison	Conclusions o
Rmalsch	ains			

- **Rmalschains** implements the MA-LS-Chains algorithm family
- Core functionality is in C++, with wrapper code in Rcpp and R
- Memetic Algorithms with Local Search Chains (MA-LS-Chains)
- Memetic algorithms combine genetic algorithms with local search.
- MA-LS-Chains: Local search (LS) is applied to individuals for a defined number of iterations. Current state of LS is then saved and possibly continued at a later stage ⇒ chaining.
- LS can be applied with more intensity on promising individuals.
- Proved effective in competitions, also for high-dimensional problems.

- Many solvers are internally implemented in C/C++ (optim, **DEoptim**, **RcppDE**, **Rmalschains**).
- Often, the objective function will also be a C/C++ implementation.
- A lot of performance gets lost by going through R for the function calls of the objective function.
- optim, **RcppDE**, and **Rmalschains** allow for direct calls within this process, which can speed up things a lot.
- see RcppDE demo "compiled" or Rmalschains demo "rastrigin_inline"
- for optim, see "Writing R Extensions, Section 6.8". There are C functions: nmmin, vmmin, cgmin, lbfgsb, samin.

Test suite:

- Test suite of 19 scalable functions (Rosenbrock, Rastrigin, Schwefel, Sphere, etc.)
- Problem dimensions 2, 10, 30, 50, 100, 200, 500, 1000
- A disclaimer:
 - Methods usually have a host of control setting
 - These setting can influence the performance dramatically
 - Methods are used with default settings in most comparisons (also here)

Rmalschains

Experimental comparison

Comparison with other Methods - Execution Time

Algorithm\Dim	5	10	30	50	100	200	500	1000
adagio_NM	68.06	254.56	13954.30	31057.45	123799.00	679064.70	-T-	-
DEoptim	402.30	770.45	2727.22	5138.34	12972.36	37580.78	177020.90	656181.60
RcppDE	287.83	322.06	1044.56	2515.88	4917.35	14383.89	85628.93	361631.10
nloptr_CRS2	322.90	413.01	2450.26	6668.90	29349.60	140109.90	-T-	-
parma_CMAES	844.36	2481.49	11397.93	22843.63	89434.72	-T-	-	-
dfoptim_HJKB	9.51	22.26	59.07	100.07	592.74	1809.29	4615.43	58617.32
malschains-CMA	44.85	137.69	888.95	7188.50	47237.20	352899.50	-T-	-
malschains-SW	29.14	108.08	440.32	1085.85	5693.48	17961.84	121082.20	570921.00
optim_BFGS	1.85	3.61	36.66	88.57	462.28	3144.69	11872.38	-E-
optim_NM	3.60	246.36	2705.37	6336.82	17351.25	43599.793	400229.41	-T-
optim_L-BFGS-B	1.77	4.01	61.94	93.80	404.21	1887.32	-E-	-
PSO	1200.48	1427.22	2002.28	2611.18	3934.63	6655.85	15833.53	35383.74
NMOF_PSO	489.87	1041.79	1858.67	2427.66	3686.72	6498.25	12251.77	26849.33
rgenoud	39695.38	-M-	-	-	-	-	-	-
GenSA	216.62	537.95	-M-	-	-	-	-	-

Time (in ms) for each optimization package. The different errors are: T: time limit was reached. M: memory limit was reached. E: program exited with error.

<u> </u>	at a second the second	· Matheada	Develotion of	
Introduction	Methods available in R	Rmalschains	Experimental comparison	Conclusions O

Comparison with other Methods - Ranking

Introduction	Methods available in R	Rmalschains	Experimental comparison	Conclusions
			0000	

Rmalschains: Indicators of Use

Included in a comparison of optimization methods for a portfolio optimization problem on www.portfolioprobe.com, where it performed pretty well.

packages are worth test driving.

Christoph Bergmeir

Introduction	Methods available in R	Rmalschains	Experimental comparison	Conclusions
			0000	

Rmalschains: Indicators of Use

Included in a comparison of optimization methods for a portfolio optimization problem on www.portfolioprobe.com, where it performed pretty well.

Christoph Bergmeir

Introduction	Methods available in R	Rmalschains 00	Experimental comparison	Conclusions •
Conclusions				

- optim not considered state of the art nowadays.
- Especially for non-convex optimization, a host of other choices is available
- See, e.g., optimx, parma::cmaes, GenSA, RcppDE
- We implemented the package **Rmalschains**, which is also good choice, especially for high-dimensional problems

Thank you

Christoph Bergmeir

christoph.bergmeir@monash.edu

Comparison with other Methods - Ranking (2)

