
The Joy of Text

Andrew Robinson

CEBRA / School of Mathematics & Statistics
University of Melbourne

February 19, 2016

Cen t r e o f Exce l l en ce f o r
B i o se cu r i t y R i sk Ana l y s i s

WOMBAT

“Making Data Analysis Easier”

WOMBAT

“Making Data Analysis Easier”

Outline

1 Red Letters, and Where They Are Going

2 The Pleasure of the Text

3 Distance in Text-Space: adist

4 Pre-Cleaning: SED

Red Letters, and Where They Are Going

CEBRA 1301A1 — Spatial Analysis of Intercepted Mail

International mail is monitored by DDU, X-ray, and manual
inspection in Gateway Facilities.

• Delivery address is recorded for all articles intercepted with
BRM.

• Addresses can be geolocated to census region.

CEBRA is using data-mining tools to identify patterns.

• Spatial analysis — spatial patterns in intercepted goods?

• Statistical analysis — any correlation with census-measured
characteristics at the ABS statistical unit level?

But Addresses are Hand Coded.

. . . and they are ugly . . .

addresses <- read.csv("../sources/sampleAddresses.csv")

as.character(addresses[1:10, "rawAddress"])

[1] "115 STANHOPE ROAD" "P O BOX 1232" "PO BOX 1232"

[4] "10 ADAMS RD" "19/83A LINCOLN ROAD" "P.O. BOX 1232"

[7] "P.O. BOX 1232" "115 STANHOPE ROAD" "10 ADAMS ROAD"

[10] "115 STANHOPE RD"

grep("1232", addresses$rawAddress, value = TRUE)

[1] "P O BOX 1232" "PO BOX 1232" "P.O. BOX 1232" "P.O. BOX 1232"

grep("stanhope", addresses$rawAddress, ignore.case = TRUE, value = TRUE)

[1] "115 STANHOPE ROAD" "115 STANHOPE ROAD" "115 STANHOPE RD"

[4] "115 STANHOPE RD"

What to do?

The Pleasure of the Text

An Instructive Example from Forestry

str(ugly)

'data.frame': 5 obs. of 3 variables:

$ Plot.ID: Factor w/ 3 levels "1_A","1_B","2_A": 1 1 2 3 3

$ Species: Factor w/ 4 levels "F","GF","GF var. Bupkiss",..: 2 4 1 2 3

$ Dbh : Factor w/ 5 levels "-","18.8","20.0",..: 2 5 3 4 1

In order to make the names easier to work with and easier to read,
within the bounds of taste, we write

(names(ugly) <- tolower(names(ugly)))

[1] "plot.id" "species" "dbh"

Notice that names is being used to both get (RHS) and set (LHS)
the names of the object, and that parentheses print the object.

Also, note that toupper plays an intuitively obvious role.

Missing Value Flags

The data have more than one missing flag.

is.na(ugly$dbh[ugly$dbh %in% c("NA","-")]) <- TRUE

ugly$dbh <- as.numeric(as.character(ugly$dbh))

ugly$dbh

[1] 18.8 NA 20.0 25.8 NA

Note the glorious many-to-many match provided by %in%.

NB: the help file for factor points out that
as.numeric(levels(f))[f]

. . . is slightly more efficient than . . .
as.numeric(as.character(f))

Grep: for the Finding of Things

Next, we may be interested in locating the fir trees in the dataset.

grep("F", ugly$species) # ... or ...

[1] 1 3 4 5

table(grep("F", ugly$species, value = TRUE))

##

F GF GF var. Bupkiss

1 2 1

We may have some data entry problems: probably the F is meant
to be a GF. We now make that call, explicitly documented in the
code, so that it can be audited.

We use sub and gsub to replace one character string with another.
But first . . .

REGular EXpressions

Regular expressions (regex) are a family of mark-up dialects that
provide a convenient and flexible language for expressing a pattern
to use to match character strings.1

Several R functions accept regular expressions as arguments.

Regular expressions use familiar symbols in a specific way to
unambiguously describe text that has specific properties. For
example,

1regexbuddy etc. can help composition; thanks to Klaus Ackermann.

REGular EXPressions: FOr EXAmple

To get strings that start with F, prepend ^.

grep("^F", c("F","FG","GF","FF"), value = TRUE)

[1] "F" "FG" "FF"

To get only those strings that end with F, append $.

grep("F$", c("F","FG","GF","FF"), value = TRUE)

[1] "F" "GF" "FF"

Use both for strings that start and end with the same F.

grep("^F$", c("F","FG","GF","FF"), value = TRUE)

[1] "F"

Process

Now, let’s fix our little F problem in a considered way. We
(i) make a rule, (ii) check the rule, (iii) apply the rule, (iv) audit
the rule.

F.to.GF <- grep("^F$", ugly$species)

sort(table(ugly$species[F.to.GF]))

##

GF GF var. Bupkiss WS F

0 0 0 1

ugly$species[F.to.GF] <- "GF"

ugly$species <- factor(ugly$species)

table(ugly$species)

##

GF GF var. Bupkiss WS

3 1 1

Ok, ok, in this case we could also just have done this:

ugly$species[ugly$species == "F"] <- "GF"

Wildcards

We use . to denote any character, and the following to denote
counts:
* denotes zero or more,
+ denotes one or more,
? denotes zero or one, and
{n} denotes n (can also do a range).

Here are all the strings that begin and end with distinct F.

grep("^F.*F$", c("F","FG","GF","FF","FaFa","FaaF","Fa aF"), value = TRUE)

[1] "FF" "FaaF" "Fa aF"

NB: .* means zero or more characters that match the ., rather
than one or more repeats of a character that matches the .

What if we want to be less flexible?

A choice between collections of characters is denoted by or: |.

grep("gray|grey", c("gray","grey","groy","red"), value = TRUE)

[1] "gray" "grey"

Square brackets denote a set from which a single character must
be selected.

grep("gr[ae]y", c("gray","grey","groy","red"), value = TRUE)

[1] "gray" "grey"

The square brackets also admit a range.

grep("gr[a-z]y", c("gray","grey","groy","groovy"), value = TRUE)

[1] "gray" "grey" "groy"

grep("gr[A-Z]y", c("gray","grey","groy","groovy"), value = TRUE)

character(0)

grep("gr[A-z]y", c("gray","grey","groy","groovy"), value = TRUE)

[1] "gray" "grey" "groy"

grep("gr[1-9]y", c("gray","grey","groy","groovy"), value = TRUE)

character(0)

grep("gr[a-z]*y", c("gray","grey","groy","groovy"), value = TRUE)

[1] "gray" "grey" "groy" "groovy"

Tools of Greater Delicacy

More specialized markups are available.

\b flags the start of a word. (NB: double the escape for R.)

grep("road", c("broadway","broad road"), value = TRUE)

[1] "broadway" "broad road"

grep("\\b(road)", c("broadway","broad road"), value = TRUE)

[1] "broad road"

\s is multiple spaces
\n is newline
^ in a list indicates negation

[[:alpha:]] is any alphabet character, where supported. 2

2NB: [A-z] may fail for non-English alphabets; thanks for this tip, Thomas
Lumley.

Back-casting

We can refer back to groups, denoted by parentheses.

varieties.regex <- "(^[A-Z]+) +(var|sensu)(.*$)"

Our regex has three portions, each of which can be referred to.

sort(table(grep(varieties.regex, ugly$species, value = TRUE)))

GF var. Bupkiss

1

(ugly$species <- gsub(varieties.regex, "\\1", ugly$species))

[1] "GF" "WS" "GF" "GF" "GF"

NB: works within expressions. Here are pairs of letters.

grep("[a-z]*([a-z])\\1[a-z]*", c("broom", "bromo"), value = TRUE)

[1] "broom"

Efficient Conversion

Run the regex across the levels instead of the variable.

(absurdly.large <- factor(c("A","B","B","see","D")))

[1] A B B see D

Levels: A B D see

levels(absurdly.large) <- gsub("see", "C", levels(absurdly.large))

absurdly.large

[1] A B B C D

Levels: A B D C

Surgery

Finally, the plot and subplot identifiers have been combined into a
single character string. We would like to separate them.

(ugly$plot <- substr(ugly$plot.id, 1, 1))

[1] "1" "1" "1" "2" "2"

(ugly$subplot <- substr(ugly$plot.id, 3, 3))

[1] "A" "A" "B" "A" "A"

Surgery

But sometimes the labels are not the same length.

pieces <- strsplit(x = as.character(ugly$plot.id), split = "_")

(ugly$plot <- sapply(pieces, function(x) x[1]))

[1] "1" "1" "1" "2" "2"

(ugly$subplot <- sapply(pieces, function(x) x[2]))

[1] "A" "A" "B" "A" "A"

Escape the wild cards in order to split on them.

strsplit(x = "my.test", split = "\\.")

[[1]]

[1] "my" "test"

Cleaning in Action

DAWR wrote cleanAddress,
a function that takes care of business.

cbind(as.character(addresses[,"rawAddress"]),

cleanAddress(addresses[,"rawAddress"]))[1:10,]

[,1] [,2]

[1,] "115 STANHOPE ROAD" "115 STANHOPE RD"

[2,] "P O BOX 1232" "PO BOX 1232"

[3,] "PO BOX 1232" "PO BOX 1232"

[4,] "10 ADAMS RD" "10 ADAMS RD"

[5,] "19/83A LINCOLN ROAD" "19/83A LINCOLN RD"

[6,] "P.O. BOX 1232" "PO BOX 1232"

[7,] "P.O. BOX 1232" "PO BOX 1232"

[8,] "115 STANHOPE ROAD" "115 STANHOPE RD"

[9,] "10 ADAMS ROAD" "10 ADAMS RD"

[10,] "115 STANHOPE RD" "115 STANHOPE RD"

Clean addresses can be geocoded.

2008 Seizures per 100,000 people (SA2)

Zoom

Distance in Text-Space: adist

Biodiversity Measured as Number of Species

Victorian State Forest Inventory

• About 300
• large (0.04 ha) plots
• small (0.01 ha) plots
• sets of quadrats (12 × 1m2)

• 30,000 biota

• 1309 unique species (before cleaning!)

Resources: a list of about 10,000 species names — a dictionary.

Generalized Levenshtein Distance

Defined as: the smallest number of additions / substitutions /
subtractions that it takes to get from A to B.

adist("Tursday", "Tuesday")

[,1]

[1,] 1

adist("Tursday", "Thursday")

[,1]

[1,] 1

Available in pattern matching via agrep.

agrep("Turkday", c("Tuesday","Thursday"), max.distance = 1, value = TRUE)

character(0)

agrep("Turkday", c("Tuesday","Thursday"), max.distance = 2, value = TRUE)

[1] "Tuesday" "Thursday"

Speedy Resolution

Strategy

• Work with 1309 unique values.

• Convert to all lower case.

• Identify absolute matches using %in% (see previously).

• Remove cruft (informalities, formalities, etc.)

• Loop: for each of several distances (low to high),
• agrep to identify contenders within the given distance,

increase distance until at least one match is found.
• Use adist to find the closest match.
• Review.
• Hand edit as needed.

Speedy resolution

Outcome:

• 924 unique species.

• Entire cleaning system scripted, documented, and auditable.

• Very happy collaborator.

Pre-Cleaning: SED

History of Horticultural Exports

Many plant products are inspected by DAWR before export.

But: single consignments can contain different products.

What combinations predominate? Are they region-specific?

Drop into system. NB: you may need extra software tools.

(Assume a data.folder and a target.folder.)

system(paste("ls -lh", data.folder, "| cut -f4- -d ' '"),

intern = TRUE)

[1] ""

[2] "andrewpr staff 26M Jan 30 12:30 HortExports1.csv"

[3] "andrewpr staff 26M Jan 30 12:30 HortExports2.csv"

[4] "andrewpr staff 26M Jan 30 12:30 HortExports3.csv"

[5] "andrewpr staff 30M Jan 30 12:30 HortExports4.csv"

Exploring the Challenge

How many Mb total?

sum(as.numeric(system(paste("ls -lh",

data.folder, "| cut -c 34-35 "),

intern = TRUE))[-1])

[1] 108

How about a quick line count?

(system(paste("cd ", data.folder, "; ls | xargs wc -l"),

intern = TRUE))

[1] " 300001 HortExports1.csv" " 300001 HortExports2.csv"

[3] " 300001 HortExports3.csv" " 358964 HortExports4.csv"

[5] " 1258967 total"

The files are csv, but read.csv fails because of infelicities.

SED: the Stream EDitor

A simple invocation:

$ cat inFile | sed 'pattern' > outFile

We focus on SED’s very useful substitution tool:

s/target/replacement/options

• SED is fast.

• SED is light.

• SED speaks REGEX.

• SED won’t overwrite.

Practise Safe SED

Print all the matches before changing them.

sed -n '/match/ p'

E.g.,

strsplit(system("cat ~/Desktop/test.csv | sed -n '/ORANGES,NAVAL/ p'",

intern = TRUE), ",")

[[1]]

[1] "8675309" "XX"

[3] "2014-05-28 00:00:00.000" "2014-06-05 00:00:00.000"

[5] "H0H0H0" "NULL"

[7] "ORA" "ORANGES"

[9] "NAVAL" "23940.000"

[11] "KGM"

Using SED from R

hort.files <- list.files(data.folder, full.names = FALSE,

pattern = "\\.csv$")
sed.file <- function(fileName) {

sed.string <-

paste("cat ", data.folder, "/", fileName,

" | sed 's/ALFALFA,SNOW/ALFALFA SNOW/g'",

" | sed 's/SULTANAS,RAISINS/SULTANAS RAISINS/g'",

" | sed 's/FLAXSEED, SAFFLOWER/FLAXSEED SAFFLOWER/g'",

" > ", target.folder, "/", fileName, sep = "")

system(sed.string)

return(TRUE)

}

system.time(sapply(hort.files, sed.file))

user system elapsed

5.540 0.531 2.394

To chain sed commands — semi-colon, or the -e flag.

But . . .

“Some people, when confronted with a Unix problem,
think ‘I know, I’ll use sed.’ Now they have two
problems.” — Jamie Zawinski 1992.

Thanks!

1 Red Letters, and Where They Are Going

2 The Pleasure of the Text

3 Distance in Text-Space: adist

4 Pre-Cleaning: SED

